Skip to main content Accessibility help
×
Home

INTERPOLATED SCHUR MULTIPLE ZETA VALUES

  • HENRIK BACHMANN (a1)

Abstract

Inspired by the recent work of M. Nakasuji, O. Phuksuwan and Y. Yamasaki, we combine interpolated multiple zeta values and Schur multiple zeta values into one object, which we call interpolated Schur multiple zeta values. Our main result will be a Jacobi–Trudi formula for a certain class of these new objects. This generalizes an analogous result for Schur multiple zeta values and implies algebraic relations between interpolated multiple zeta values.

Copyright

References

Hide All
[AZ] Aigner, M. and Ziegler, G., Proofs from the Book, 5th edn (Springer, Berlin, 2014).
[NPY] Nakasuji, M., Phuksuwan, O. and Yamasaki, Y., ‘On Schur multiple zeta functions: a combinatoric generalization of multiple zeta functions’, Preprint, 2017, arXiv:1704.08511 [math.NT].
[W] Wakabayashi, N., ‘Interpolation of q-analogue of multiple zeta and zeta-star values’, J. Number Theory 174 (2017), 2639.
[Y] Yamamoto, S., ‘Interpolation of multiple zeta and zeta-star values’, J. Algebra 385 (2013), 102114.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

INTERPOLATED SCHUR MULTIPLE ZETA VALUES

  • HENRIK BACHMANN (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.