Skip to main content
×
×
Home

INTERPOLATED SCHUR MULTIPLE ZETA VALUES

  • HENRIK BACHMANN (a1)
Abstract

Inspired by the recent work of M. Nakasuji, O. Phuksuwan and Y. Yamasaki, we combine interpolated multiple zeta values and Schur multiple zeta values into one object, which we call interpolated Schur multiple zeta values. Our main result will be a Jacobi–Trudi formula for a certain class of these new objects. This generalizes an analogous result for Schur multiple zeta values and implies algebraic relations between interpolated multiple zeta values.

Copyright
References
Hide All
[AZ] Aigner, M. and Ziegler, G., Proofs from the Book, 5th edn (Springer, Berlin, 2014).
[NPY] Nakasuji, M., Phuksuwan, O. and Yamasaki, Y., ‘On Schur multiple zeta functions: a combinatoric generalization of multiple zeta functions’, Preprint, 2017, arXiv:1704.08511 [math.NT].
[W] Wakabayashi, N., ‘Interpolation of q-analogue of multiple zeta and zeta-star values’, J. Number Theory 174 (2017), 2639.
[Y] Yamamoto, S., ‘Interpolation of multiple zeta and zeta-star values’, J. Algebra 385 (2013), 102114.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed