Skip to main content

Lagrangian conditions for a nonsmooth vector-valued minimax

  • B. D. Craven (a1) and D. V. Luu (a2)

Lagrangian necessary and sufficient conditions for a nonsmooth vector-valued minimax in terms of Clarke's generalized Jacobians are established under suitable invexity hypotheses.

Hide All
[1]Arthurs, A. M., Complementary variational principles, (Clarendon Press, Oxford, England, 1979).
[2]Aubin, J. P., ‘Lipschitz behaviour of solutions to convex minimization problems’, Math. Oper. Res. 9 (1984), 87111.
[3]Clarke, F. H., Optimization and nonsmooth analysis, (Wiley, New York, 1983).
[4]Craven, B. D., ‘Strong vector minimization and duality’, Z. Angew. Math. Mech. 60 (1980), 15.
[5]Craven, B. D., ‘Vector-valued optimization’, in Generalized concavity in optimization and economics (eds. Schaible, S. and Ziemba, W. T.), (Academic Press, New York, 1981), 661687.
[6]Craven, B. D., ‘Nondifferentiable optimization by smooth approximation’, Optimization 17 (1986), 317.
[7]Craven, B. D., ‘A modified Wolfe dual for weak vector minimization’, Numer. Funct. Anal. Optim. 10 (1989), 899907.
[8]Craven, B. D., ‘Quasimin and quasisaddlepoint for vector optimization’, Numer. Funct. Anal. Optim. 11 (1970), 4554.
[9]Craven, B. D., ‘Convergence of discrete approximations for constrained minimization’, J. Austral. Math. Soc. (Series B) 35 (1994), 5059.
[10]Craven, B. D. and Luu, D. V., ‘An approach to optimality conditions for nonsmooth minimax problems’, University of Melbourne, Department of Mathematics, Preprint Series No. 8 (1993).
[11]Craven, B. D. and Luu, D. V., ‘Constrained minimax for a vector-valued function’, Optimization 31 (1994), 199208.
[12]Jeyakumar, V., ‘Convexlike alternative theorem and mathematical programming’, Optimization 16 (1985), 643652.
[13]Mordukhovich, B., ‘Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis’, Trans. Amer. Math. Soc. 343 (1994), 609657.
[14]Robinson, S. M., ‘Stability theory for systems of inequalities, Part II: Differentiable nonlinear systems’, SIAM J. Numer. Anal. 13 (1976), 497513.
[15]Rockafellar, R. T., ‘Lipschitzian properties of multifunctions’, Nonlinear Anal. 9 (1985), 867885.
[16]Yen, N. D., ‘Stability of the solution set of perturbed nonsmooth inequality systems’, Preprint. (International Centre for Theoretical Physics, Trieste, Italy, 1990).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed