 $\boldsymbol {L}$-FUNCTIONS
$\boldsymbol {L}$-FUNCTIONSPublished online by Cambridge University Press: 22 February 2022
In this paper, we study lower-order terms of the one-level density of low-lying zeros of quadratic Hecke L-functions in the Gaussian field. Assuming the generalized Riemann hypothesis, our result is valid for even test functions whose Fourier transforms are supported in  $(-2, 2)$. Moreover, we apply the ratios conjecture of L-functions to derive these lower-order terms as well. Up to the first lower-order term, we show that our results are consistent with each other when the Fourier transforms of the test functions are supported in
$(-2, 2)$. Moreover, we apply the ratios conjecture of L-functions to derive these lower-order terms as well. Up to the first lower-order term, we show that our results are consistent with each other when the Fourier transforms of the test functions are supported in  $(-2, 2)$.
$(-2, 2)$.
Communicated by Dzmitry Badziahin
P. G. is supported in part by NSFC grant 11871082 and L. Z. by FRG grant PS43707 and the Goldstar Award PS53450 from the University of New South Wales (UNSW). Parts of this work were done when P. G. visited UNSW in September 2019. He wishes to thank UNSW for the invitation, financial support and warm hospitality during his pleasant stay. Finally, the authors thank the anonymous referee for his/her very careful reading of this manuscript and many helpful comments and suggestions.
 $L$
-functions for elliptic curves’, Adv. Math. 219(3) (2008), 952–985.CrossRefGoogle Scholar
$L$
-functions for elliptic curves’, Adv. Math. 219(3) (2008), 952–985.CrossRefGoogle Scholar $GL(4)$
 and a
$GL(4)$
 and a 
 $GL(6)$
 family of
$GL(6)$
 family of 
 $L$
-functions’, Compos. Math. 142(6) (2006), 1403–1425.CrossRefGoogle Scholar
$L$
-functions’, Compos. Math. 142(6) (2006), 1403–1425.CrossRefGoogle Scholar $L$
-functions on the underlying group symmetries’, Proc. Lond. Math. Soc. (3) 99(3) (2009), 787–820.CrossRefGoogle Scholar
$L$
-functions on the underlying group symmetries’, Proc. Lond. Math. Soc. (3) 99(3) (2009), 787–820.CrossRefGoogle Scholar $L$
-functions: beyond the ratios conjecture’, Math. Proc. Cambridge Philos. Soc. 160(2) (2016), 315–351.CrossRefGoogle Scholar
$L$
-functions: beyond the ratios conjecture’, Math. Proc. Cambridge Philos. Soc. 160(2) (2016), 315–351.CrossRefGoogle Scholar $L$
-functions: lower order terms for extended support’, Compos. Math. 153(6) (2017), 1196–1216.CrossRefGoogle Scholar
$L$
-functions: lower order terms for extended support’, Compos. Math. 153(6) (2017), 1196–1216.CrossRefGoogle Scholar $L$
-functions: a transition in the ratios conjecture’, Q. J. Math. 69(4) (2018), 1129–1149.Google Scholar
$L$
-functions: a transition in the ratios conjecture’, Q. J. Math. 69(4) (2018), 1129–1149.Google Scholar $L$
-functions’, Duke Math. J. 116(2) (2003), 189–217.CrossRefGoogle Scholar
$L$
-functions’, Duke Math. J. 116(2) (2003), 189–217.CrossRefGoogle Scholar $n$
-level density of the low-lying zeros of quadratic Dirichlet
$n$
-level density of the low-lying zeros of quadratic Dirichlet 
 $L$
-functions’, Int. Math. Res. Not. IMRN 2014(6) (2014), 1699–1728.CrossRefGoogle Scholar
$L$
-functions’, Int. Math. Res. Not. IMRN 2014(6) (2014), 1699–1728.CrossRefGoogle Scholar $L$
-functions to prime moduli’, Hardy-Ramanujan J. 43 (2020), 173–187.Google Scholar
$L$
-functions to prime moduli’, Hardy-Ramanujan J. 43 (2020), 173–187.Google Scholar $L$
-functions with orthogonal symmetry’, Duke Math. J. 136(1) (2007), 115–172.CrossRefGoogle Scholar
$L$
-functions with orthogonal symmetry’, Duke Math. J. 136(1) (2007), 115–172.CrossRefGoogle Scholar $n$
-level densities’, Mem. Amer. Math. Soc. 251(1194) (2018), 93 pages.CrossRefGoogle Scholar
$n$
-level densities’, Mem. Amer. Math. Soc. 251(1194) (2018), 93 pages.CrossRefGoogle Scholar $L$
-functions ratios conjecture’, Int. Math. Res. Not. IMRN 2008 (2008). Article ID rnm146.Google Scholar
$L$
-functions ratios conjecture’, Int. Math. Res. Not. IMRN 2008 (2008). Article ID rnm146.Google Scholar $L$
-functions’, J. Number Theory 132(12) (2012), 2866–2891.CrossRefGoogle Scholar
$L$
-functions’, J. Number Theory 132(12) (2012), 2866–2891.CrossRefGoogle Scholar $L$
-functions close to the real axis’, Acta Arith. 91(3) (1999), 209–228.CrossRefGoogle Scholar
$L$
-functions close to the real axis’, Acta Arith. 91(3) (1999), 209–228.CrossRefGoogle Scholar $L$
-functions in the level aspect’, Acta Arith. 141(2) (2010), 153–170.CrossRefGoogle Scholar
$L$
-functions in the level aspect’, Acta Arith. 141(2) (2010), 153–170.CrossRefGoogle Scholar $L$
-functions in the level aspect’, Forum Math. 23(5) (2011), 969–1028.CrossRefGoogle Scholar
$L$
-functions in the level aspect’, Forum Math. 23(5) (2011), 969–1028.CrossRefGoogle Scholar $L$
-functions and random matrix theory’, Duke Math. J. 209(1) (2001), 147–181.CrossRefGoogle Scholar
$L$
-functions and random matrix theory’, Duke Math. J. 209(1) (2001), 147–181.CrossRefGoogle Scholar $L$
-functions’, Forum Math. Sigma 7 (2019), e23.CrossRefGoogle Scholar
$L$
-functions’, Forum Math. Sigma 7 (2019), e23.CrossRefGoogle Scholar $L$
-functions at s =
$L$
-functions at s = 
 $\frac{1}{2}$
’, Ann. of Math. (2) 152(2) (2000), 447–488.CrossRefGoogle Scholar
$\frac{1}{2}$
’, Ann. of Math. (2) 152(2) (2000), 447–488.CrossRefGoogle Scholar $1$
-level density of families of elliptic curves’, Int. Math. Res. Not. IMRN 10 (2005), 587–633.CrossRefGoogle Scholar
$1$
-level density of families of elliptic curves’, Int. Math. Res. Not. IMRN 10 (2005), 587–633.CrossRefGoogle Scholar