Skip to main content Accesibility Help
×
×
Home

A MODULAR PROOF OF TWO OF RAMANUJAN’S FORMULAE FOR $1/\unicode[STIX]{x1D70B}$

  • YUE ZHAO (a1)
Abstract

In this article, we give new proofs of two of Ramanujan’s $1/\unicode[STIX]{x1D70B}$ formulae

$$\begin{eqnarray}\frac{1}{\unicode[STIX]{x1D70B}}=\frac{2\sqrt{2}}{99^{2}}\mathop{\sum }_{m=0}^{\infty }(26390m+1103)\frac{(4m)!}{396^{4m}(m!)^{4}}\end{eqnarray}$$
and
$$\begin{eqnarray}\frac{1}{\unicode[STIX]{x1D70B}}=\frac{2}{84^{2}}\mathop{\sum }_{m=0}^{\infty }(21460m+1123)\frac{(-1)^{m}(4m)!}{(84\sqrt{2})^{4m}(m!)^{4}}\end{eqnarray}$$
using the theory of modular forms. The method can also be used to prove other classical $1/\unicode[STIX]{x1D70B}$ formulae.

Copyright
References
Hide All
[1] Borcherds, R. E., ‘Reflection groups of Lorentzian lattices’, Duke Math. J. 104 (2000), 319366.
[2] Borwein, J. M. and Borwein, P. B., Pi and the AGM (Wiley, New York, 1987).
[3] Chan, H. H. and Cooper, S., ‘Rational analogues of Ramanujan’s series for 1/𝜋’, Math. Proc. Cambridge Philos. Soc. 153(2) (2012), 361383.
[4] Diamond, F. and Shurman, J., A First Course in Modular Forms, Graduate Texts in Mathematics, 228 (Springer, New York, 2005).
[5] Ligozat, G., ‘Courbes modulaires de genre 1’, Mém. Soc. Math. Fr. 43 (1975), 780.
[6] Mazur, B. and Swinnerton-Dyer, P., ‘Arithmetic of Weil curves’, Invent. Math. 25(1) (1974), 161.
[7] Newman, M., ‘Construction and application of a class of modular functions’, Proc. Lond. Math. Soc. 3(1) (1957), 334350.
[8] Ramanujan, S., ‘Modular equations and approximations to Pi’, Q. J. Pure Appl. Math. 45 (1914), 350372.
[9] Weber, H. M., Lehrbuch der Algebra, Vol. III (Chelsea, New York, 1961).
[10] Zhao, Y., ‘Chudnovsky’s formula for revisited’, Preprint, 2018, arXiv:1807.10125.
[11] Zudilin, W., ‘Ramanujan-type formulae for 1/𝜋: a second wind?’, in: Modular Forms and String Duality (eds. Yui, N., Verrill, H. and Doran, C. F.) (American Mathematical Society, Providence, RI, 2008), 179188.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed