Skip to main content
×
Home
    • Aa
    • Aa
  • Access
  • Cited by 1
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Day, B. J. 1977. Promonoidal functor categories. Journal of the Australian Mathematical Society, Vol. 23, Issue. 03, p. 312.


    ×
  • Currently known as: Journal of the Australian Mathematical Society Title history
    Journal of the Australian Mathematical Society, Volume 23, Issue 3
  • May 1977, pp. 292-311

Note on monoidal monads

  • B. J. Day (a1)
  • DOI: http://dx.doi.org/10.1017/S1446788700018929
  • Published online: 01 April 2009
Abstract
Abstract

The representation theory of categories is used to embed each promonoidal monad in a monoidal biclosed monad. The existence of a promonoidal structure on the ordinary Eilenberg- Moore category generated by a promonoidal monad is examined. Several results by previous authors (notably A. Kock and F. E. J. Linton) are reproved and extended.

    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Note on monoidal monads
      Your Kindle email address
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Note on monoidal monads
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Note on monoidal monads
      Available formats
      ×
Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. Bénabou (1967), ‘Introduction to bicategories’, Reports of the Midwest Category Seminar I (Springer Lecture Notes, Vol. 47), 177.

B. J. Day and G. M. Kelly (1969), ‘Enriched functor categories’, Reports of the Midwest Category Seminar III (Springer Lecture Notes, Vol. 106), 178191.

B. J. Day (1970a), ‘On closed categories of functors’, Reports of the Midwest Category Seminar IV (Springer Lecture Notes, Vol. 137), 138.

B. J. Day (1974a), ‘On closed categories of functors II’, Category Seminar, Sydney 1972/73 (Springer Lecture Notes, Vol. 420), 2053.

B. J. Day (1974b), ‘An embedding theorem for closed categories’, Category Seminar, Sydney 1972/73 (Springer Lecture Notes, Vol. 420), 5564.

E. Dubuc (1970), Kan extensions in enriched category theory (Springer Lecture Notes, Vol. 145).

S. Eilenberg and G. M. Kelly (1966), ‘Closed categories’, Proc. Conference on Categorical Algebra, La Jolla, 1965 (Springer-Verlag, 1966), 421562.

G. M. Kelly (1974), ‘On clubs and doctrines’, Category Seminar, Sidney 1972/73 (Springer Lecture Notes, Vol. 420), 181256.

F. E. J. Linton (1969), ‘Coequalisers in categories of algebras’, Seminar on Triples and Categorical Homology Theory (Springer Lecture Notes, Vol. 80), 7590.

R. H. Street (1972), ‘The formal theory of monads’, J. of Pure and Applied Algebra, 2, 149168.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax