Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-24T13:24:23.999Z Has data issue: false hasContentIssue false

On Runge-Kutta processes of high order

Published online by Cambridge University Press:  09 April 2009

J. C. Butcher
University of Canterbury, New Zealand.
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An (explicit) Runge-Kutta process is a means of numerically solving the differential equation , at the point x = x0+h, where y, f may be vectors.

Research Article
Copyright © Australian Mathematical Society 1964


[1]Butcher, J. C., Coefficients for the study of Runge-Kutta integration processes, This Journal 3 (1963), 185201.Google Scholar
[2]Kutta, W., Beitrag zur näherungsweisen Integration totaler Differentialgleichungen, Zeit. Math. Physik 46 (1901), 435452Google Scholar
[3]Nyström, E. J., Über die numerische Integration von Differentialgleichungen, Acta Soc. Sci. Fennicae 50, No. 13 (1925).Google Scholar
[4]Huta, A., Une amélioration de la méthode de Runge-Kutta-Nyström pour la résolution numérique des équations différentielles du premier ordre, Acta Fac. Nat. Univ. Commenian. Math. 1 (1956) 201224.Google Scholar
[5]Huta, A., Contribution à la formule de sixième ordre dans la méthode de Runge-Kutta-Nyström, Acta Fac. Nat. Univ. Comenian. Math. 2 (1957), 2124.Google Scholar
[6]Butcher, J. C., On the integration processes of A. Huta, This Journal 3 (1963), 202206.Google Scholar
[7]Butcher, J. C., Integration processes based on Radau quadrature formulas, Math. Comp., 18 (04, 1964).Google Scholar
[8]Butcher, J. C., Implicit Runge-Kutta processes, Math. Comp., 18 (1964), 5064.Google Scholar