Skip to main content Accessibility help
×
×
Home

PRIMITIVE PRIME DIVISORS AND THE $\mathbf{n}$ TH CYCLOTOMIC POLYNOMIAL

  • S. P. GLASBY (a1) (a2), FRANK LÜBECK (a3), ALICE C. NIEMEYER (a4) and CHERYL E. PRAEGER (a1) (a5)
Abstract

Primitive prime divisors play an important role in group theory and number theory. We study a certain number-theoretic quantity, called $\unicode[STIX]{x1D6F7}_{n}^{\ast }(q)$ , which is closely related to the cyclotomic polynomial $\unicode[STIX]{x1D6F7}_{n}(x)$ and to primitive prime divisors of $q^{n}-1$ . Our definition of $\unicode[STIX]{x1D6F7}_{n}^{\ast }(q)$ is novel, and we prove it is equivalent to the definition given by Hering. Given positive constants $c$ and $k$ , we provide an algorithm for determining all pairs $(n,q)$ with $\unicode[STIX]{x1D6F7}_{n}^{\ast }(q)\leq cn^{k}$ . This algorithm is used to extend (and correct) a result of Hering and is useful for classifying certain families of subgroups of finite linear groups.

Copyright
Corresponding author
Alice.Niemeyer@nuim.ie
References
Hide All
[1] Bamberg, J. and Penttila, T., ‘Overgroups of cyclic sylow subgroups of linear groups’, Comm. Algebra 36 (2008), 25032543.
[2] Bang, A. S., ‘Taltheoretiske Undersøgelser’, Tidsskr. Math. (5) 4 (1886), 7080; and 130–137.
[3] Biliotti, M., Jha, V., Johnson, N. L. and Montinaro, A., ‘Translation planes of order q 2 admitting a two-transitive orbit of length q + 1 on the line at infinity’, Des. Codes Cryptogr. 44 (2007), 6986.
[4] Biliotti, M., Jha, V., Johnson, N. L. and Montinaro, A., ‘Two-transitive groups on a hyperbolic unital’, J. Combin. Theory Ser. A 115 (2008), 526533.
[5] Biliotti, M., Jha, V., Johnson, N. L. and Montinaro, A., ‘Classification of projective translation planes of order q 2 admitting a two-transitive orbit of length q + 1’, J. Geom. 90(1–2) (2008), 100140.
[6] Bosma, W., Cannon, J. and Playoust, C., ‘The Magma algebra system. I. The user language’, J. Symbolic Comput. 24(3–4) (1997), 235265.
[7] Camina, A. R. and Whelan, E. A., Linear Groups and Permutations, Research Notes in Mathematics, 118 (Pitman (Advanced Publishing Program), Boston, MA, 1985).
[8] Dandapat, G. G., Hunsucker, J. L. and Pomerance, C., ‘Some new results on odd perfect numbers’, Pacific J. Math. 57 (1975), 359364.
[9] DiMuro, J., ‘On prime power order elements of general linear groups’, J. Algebra 367 (2012), 222236.
[10] Dummit, D. S. and Foote, R. M., Abstract Algebra, 3rd edn, (Wiley & Sons, Hoboken, 2004).
[11] Feit, W., ‘On large Zsigmondy primes’, Proc. Amer. Math. Soc. 102 (1988), 2936.
[12] The GAP Group, GAP – Groups, Algorithms, and Programming, version 4.7.7; 2015,http://www.gap-system.org.
[13] Glasby, S. P., Supporting GAP and Magma code, http://www.maths.uwa.edu.au/∼glasby/RESEARCH.
[14] Guralnick, R., Penttila, T., Praeger, C. E. and Saxl, J., ‘Linear groups with orders having certain large prime divisors’, Proc. Lond. Math. Soc. 78 (1999), 167214.
[15] Hering, C., ‘Transitive linear groups and linear groups which contain irreducible subgroups of prime order’, Geom. Dedicata 2 (1974), 425460.
[16] James, G. D., ‘On the minimal dimensions of irreducible representations of symmetric groups’, Math. Proc. Cambridge Philos. Soc. 94 (1983), 417424.
[17] Lenstra–Pomerance–Wagstaff conjecture, http://primes.utm.edu/mersenne/heuristic.html.
[18] Lüneburg, H., ‘Ein einfacher Beweis für den Satz von Zsigmondy über primitive Primteiler von A N - 1. [A simple proof of Zsigmondy’s theorem on primitive prime divisors of A N - 1]’, in: Geometries and Groups (Springer, Berlin, 1981), 219222.
[19] Niemeyer, A. C. and Praeger, C. E., ‘A recognition algorithm for classical groups over finite fields’, Proc. Lond. Math. Soc. 77 (1998), 117169.
[20] Ribenboim, P., The Little Book of Big Primes (Springer, New York, 1991).
[21] Roitman, M., ‘On Zsigmondy primes’, Proc. Amer. Math. Soc. 125 (1997), 19131919.
[22] Zsigmondy, K., ‘Zur Theorie der Potenzreste’, Monatsh. Math. 3 (1892), 265284.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed