Skip to main content
×
×
Home

RAMANUJAN SERIES WITH A SHIFT

  • JESÚS GUILLERA (a1)
Abstract

We consider an extension of the Ramanujan series with a variable $x$ . If we let $x=x_{0}$ , we call the resulting series ‘Ramanujan series with the shift $x_{0}$ ’. Then we relate these shifted series to some $q$ -series and solve the case of level $4$ with the shift $x_{0}=1/2$ . Finally, we indicate a possible way towards proving some patterns observed by the author corresponding to the levels $\ell =1,2,3$ and the shift $x_{0}=1/2$ .

Copyright
References
Hide All
[1] Borwein, J. M., Glasser, M. L., McPhedran, R. C., Wan, J. G. and Zucker, I. J., Lattice Sums Then and Now, Encyclopedia of Mathematics and its Applications, 150 (Cambridge University Press, Cambridge, 2013).
[2] Chan, H. H., Chan, S. H. and Liu, Z., ‘Domb’s numbers and Ramanujan–Sato type series for 1/𝜋’, Adv. Math. 186 (2004), 396410.
[3] Glasser, M. L. and Zucker, I. J., ‘Lattice sums’, in: Theoretical Chemistry: Advances and Perspectives, Vol. 5 (eds. Eyring, H. and Henderson, D.) (Academic Press, New York, 1980), 67139.
[4] Guillera, J., ‘Series closely related to Ramanujan formulas for Pi’, unpublished paper (8 pages), 2003.
[5] Guillera, J., ‘Series de Ramanujan: generalizaciones y conjeturas’, PhD Thesis, Universidad de Zaragoza, Spain, 2007.
[6] Guillera, J., ‘A matrix form of Ramanujan-type series for 1/𝜋’, in: Gems in Experimental Mathematics, Contemporary Mathematics, 517 (eds. Amdeberhan, T., Medina, L. A. and Moll, V. H.) (American Mathematical Society, Washington, DC, 2010), 189206.
[7] Guillera, J., ‘WZ-proofs of ‘divergent’ Ramanujan-type series’, in: Waterloo Workshop in Computer Algebra in Memory of Herbert S. Wilf, Advances in Combinatorics (eds. Kotsireas, I. and Zima, E. V.) (Springer, Berlin–Heidelberg, 2013), 187195.
[8] Guillera, J. and Rogers, M., ‘Ramanujan series upside-down’, J. Aust. Math. Soc. 97 (2014), 78106.
[9] Petkovs̆ek, M., Wilf, H. S. and Zeilberger, D., A = B (A.K. Peters, Natick, MA, 1996).
[10] Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences (OEIS), founded in 1964,https://oeis.org.
[11] Yang, Y., ‘Apèry limits and special values of L-functions’, J. Math. Anal. Appl. 343 (2008), 492513.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed