Skip to main content Accessibility help
×
Home

REES MATRIX CONSTRUCTIONS FOR CLUSTERING OF DATA

  • A. V. KELAREV (a1), P. WATTERS (a2) and J. L. YEARWOOD (a3)

Abstract

This paper continues the investigation of semigroup constructions motivated by applications in data mining. We give a complete description of the error-correcting capabilities of a large family of clusterers based on Rees matrix semigroups well known in semigroup theory. This result strengthens and complements previous formulas recently obtained in the literature. Examples show that our theorems do not generalize to other classes of semigroups.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      REES MATRIX CONSTRUCTIONS FOR CLUSTERING OF DATA
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      REES MATRIX CONSTRUCTIONS FOR CLUSTERING OF DATA
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      REES MATRIX CONSTRUCTIONS FOR CLUSTERING OF DATA
      Available formats
      ×

Copyright

Corresponding author

For correspondence; e-mail: a.kelarev@ballarat.edu.au

Footnotes

Hide All

The first author was supported by Discovery Grant DP0449469 from the Australian Research Council. The second author was supported by Linkage Grant LP0776267 from the Australian Research Council. The third author was supported by a Queen Elizabeth II Fellowship and Discovery Grant DP0211866 from the Australian Research Council.

Footnotes

References

Hide All
[1]Araújo, I. M., Kelarev, A. V. and Solomon, A., ‘An algorithm for commutative semigroup algebras which are principal ideal rings with identity’, Comm. Algebra 32(4) (2004), 12371254.
[2]Ash, C. J., Hall, T. E. and Pin, J.-E., ‘On the varieties of languages associated with some varieties of finite monoids with commuting idempotents’, Inform. and Comput. 86(1) (1990), 3242.
[3]Asuncion, A. and Newman, D. J., UCI Machine Learning Repository (University of California, School of Information and Computer Science, Irvine, CA, 2009), http://www.ics.uci.edu/∼mlearn/MLRepository.html.
[4]Bagirov, A. M., Rubinov, A. M. and Yearwood, J. L., ‘A global optimization approach to classification’, Optim. Eng. 3 (2002), 129155.
[5]Bagirov, A. M. and Yearwood, J. L., ‘A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems’, European J. Oper. Res. 170 (2006), 578596.
[6]Batten, L. M., Coulter, R. S. and Henderson, M., ‘Extending abelian groups to rings’, J. Aust. Math. Soc. Ser A. 82(3) (2007), 297314.
[7]Boslaugh, S. and Watters, P., Statistics in a Nutshell: A Desktop Quick Reference (O’Reilly & Associates, Sebastopol, CA, 2008).
[8]Cazaran, J. and Kelarev, A. V., ‘Generators and weights of polynomial codes’, Arch. Math. (Basel) 69 (1997), 479486.
[9]Cazaran, J., Kelarev, A. V., Quinn, S. J. and Vertigan, D., ‘An algorithm for computing the minimum distances of extensions of BCH codes embedded in semigroup rings’, Semigroup Forum 73 (2006), 317329.
[10]Clifford, A. H. and Preston, G. B., The Algebraic Theory of Semigroups (American Mathematical Society, Providence, RI, 1961).
[11]Crabb, M. J., McGregor, C. M. and Munn, W. D., ‘A property of the complex semigroup algebra of a free monoid’, J. Aust. Math. Soc. Ser A. 81(1) (2006), 97104.
[12]Davey, B. A., Jackson, M., Maróti, M. and McKenzie, R. N., ‘Principal and syntactic congruences in congruence-distributive and congruence-permutable varieties’, J. Aust. Math. Soc. 85(1) (2008), 5974.
[13]Easdown, D., East, J. and FitzGerald, D. G., ‘A presentation of the dual symmetric inverse monoid’, Internat. J. Algebra Comput. 18 (2008), 357374.
[14]Easdown, D. and Munn, W. D., ‘Trace functions on inverse semigroup algebras’, Bull. Aust. Math. Soc. 52(3) (1995), 359372.
[15]Goberstein, S. M., ‘Inverse semigroups determined by their partial automorphism monoids’, J. Aust. Math. Soc. Ser A. 81(2) (2006), 185198.
[16]Hall, T. E., ‘The radical of the algebra of any finite semigroup over any field’, J. Aust. Math. Soc. Ser. A 11 (1970), 350352.
[17]Hall, T. E., ‘Biprefix codes, inverse semigroups and syntactic monoids of injective automata’, Theoret. Comput. Sci. 32(1–2) (1984), 201213.
[18]Howie, J. M., Fundamentals of Semigroup Theory (Clarendon Press, Oxford, 1995).
[19]Jackson, M., ‘The embeddability of ring and semigroup amalgams is undecidable’, J. Aust. Math. Soc. Ser. A 69 (2000), 272286.
[20]Jackson, M., ‘On the finite basis problem for finite Rees quotients of free monoids’, Acta Sci. Math. (Szeged) 67 (2001), 121159.
[21]Jackson, M. and Volkov, M., ‘Undecidable problems for completely 0-simple semigroups’, J. Pure Applied Algebra, to appear.
[22]Kambites, M., ‘The loop problem for Rees matrix semigroups’, Semigroup Forum 76(2) (2008), 204216.
[23]Kang, B. H., Kelarev, A. V., Sale, A. H. J. and Williams, R. N., ‘A new model for classifying DNA code inspired by neural networks and FSA’, in: Pacific Knowledge Acquisition Workshop, PKAW2006, Guilin, China, Lecture Notes in Computer Science, 4303 (Springer, Berlin, Heidelberg, 2006), pp. 187198.
[24]Kelarev, A. V., Ring Constructions and Applications (World Scientific, River Edge, NJ, 2002).
[25]Kelarev, A. V., Graph Algebras and Automata (Marcel Dekker, New York, 2003).
[26]Kelarev, A. V., Göbel, R., Rangaswamy, K. M., Schultz, P. and Vinsonhaler, C., Abelian Groups, Rings and Modules, Contemporary Mathematics, 273 (American Mathematical Society, Providence, RI, 2001).
[27]Kelarev, A., Kang, B. and Steane, D., ‘Clustering algorithms for ITS sequence data with alignment metrics’, in: AI06: Advances in Artificial Intelligence, 19th Australian Joint Conference on Artificial Intelligence, Lecture Notes in Computer Science, 4304 (Springer, Berlin, Heidelberg, 2006), pp. 10271031.
[28]Kelarev, A. V. and Passman, D. S., ‘A description of incidence rings of group automata’, Contemp. Math. 456 (2008), 2733.
[29]Kelarev, A. V., Yearwood, J. L. and Mammadov, M. A., ‘A formula for multiple classifiers in data mining based on Brandt semigroups’, Semigroup Forum 78(2) (2009), 293309.
[30]Kelarev, A. V., Yearwood, J. L. and Vamplew, P. W., ‘A polynomial ring construction for classification of data’, Bull. Aust. Math. Soc. 79 (2009), 213225.
[31]Lawson, M. V., Margolis, S. W. and Steinberg, B., ‘Expansions of inverse semigroups’, J. Aust. Math. Soc. Ser A. 80(2) (2006), 205228.
[32]López-Permouth, S. R., Shum, K. P. and Sanh, N. V., ‘Kasch modules and pV-rings’, Algebra Colloq. 12(2) (2005), 219227.
[33]McCombie, S., Watters, P., Ng, A. and Watson, B., ‘Forensic characteristics of phishing—petty theft or organized crime?’, in: Proc. 4th Internat. Conf. on Web Information Systems and Technologies, WEBIST (INSTICC Press, Setúbal, Portugal, 2008).
[34]Reilly, N. R., ‘Varieties generated by completely 0-simple semigroups’, J. Aust. Math. Soc. 84(3) (2008), 375403.
[35]Watters, P., Martin, F. and Stripf, H. S., ‘Visual detection of LSB-encoded natural image steganography’, ACM Trans. Appl. Perception 5(1) (2008).
[36]Witten, I. H. and Frank, E., Data Mining: Practical Machine Learning Tools and Techniques (Elsevier/Morgan Kaufmann, Amsterdam, 2005).
[37]Wolpert, D. H., ‘The lack of a priori distinctions between learning algorithms’, Neural Comput. 8(7) (1996), 13411390.
[38]Yearwood, J. L., Bagirov, A. M. and Kelarev, A. V., ‘Optimization methods and the k-committees algorithm for clustering of sequence data’, Appl. Comput. Math. 8(1) (2009), 92101.
[39]Yearwood, J. L., Kang, B. H. and Kelarev, A. V., ‘Experimental investigation of classification algorithms for ITS dataset’, in: PKAW 2008, Pacific Rim Knowledge Acquisition Workshop, Hanoi, Vietnam, 15–16 December 2008 (part of PRICAI-08, Tenth Pacific Rim Internat. Conf. Artificial Intelligence), Lecture Notes in Computer Science, 5465 (Springer, Berlin, Heidelberg, 2009), pp. 262272.
[40]Yearwood, J. L. and Mammadov, M., Classification Technologies: Optimization Approaches to Short Text Categorization (IGI Global, Hershey, PA, 2007).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

REES MATRIX CONSTRUCTIONS FOR CLUSTERING OF DATA

  • A. V. KELAREV (a1), P. WATTERS (a2) and J. L. YEARWOOD (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed