No CrossRef data available.
Published online by Cambridge University Press: 17 April 2017
Let $a\in \mathbb{R}$ , and let
$k(a)$ be the largest constant such that
$\sup |\text{cos}(na)-\cos (nb)|<k(a)$ for
$b\in \mathbb{R}$ implies that
$b\in \pm a+2\unicode[STIX]{x1D70B}\mathbb{Z}$ . We show that if a cosine sequence
$(C(n))_{n\in \mathbb{Z}}$ with values in a Banach algebra
$A$ satisfies
$\sup _{n\geq 1}\Vert C(n)-\cos (na).1_{A}\Vert <k(a)$ , then
$C(n)=\cos (na).1_{A}$ for
$n\in \mathbb{Z}$ . Since
$\!\sqrt{5}/2\leq k(a)\leq 8/3\!\sqrt{3}$ for every
$a\in \mathbb{R}$ , this shows that if some cosine family
$(C(g))_{g\in G}$ over an abelian group
$G$ in a Banach algebra satisfies
$\sup _{g\in G}\Vert C(g)-c(g)\Vert <\!\sqrt{5}/2$ for some scalar cosine family
$(c(g))_{g\in G}$ , then
$C(g)=c(g)$ for
$g\in G$ , and the constant
$\!\sqrt{5}/2$ is optimal. We also describe the set of all real numbers
$a\in [0,\unicode[STIX]{x1D70B}]$ satisfying
$k(a)\leq \frac{3}{2}$ .