No CrossRef data available.
Published online by Cambridge University Press: 22 July 2021
We propose a conjecture that the Galois representation attached to every Hilbert modular form is noncritical and prove it under certain conditions. Under the same condition we prove Chida, Mok and Park’s conjecture that Fontaine-Mazur L-invariant and Teitelbaum-type L-invariant coincide with each other.
 $p$
-adic uniformization of Shimura curves: the theorems of Cherednik and Drinfeld, 
Astérisque
, 196–197 (1991), 45–158.Google Scholar
$p$
-adic uniformization of Shimura curves: the theorems of Cherednik and Drinfeld, 
Astérisque
, 196–197 (1991), 45–158.Google Scholar $\ell$
--adic representations associated with Hilbert modular forms, 
Ann. Sci. école Norm. Sup. (4)
, 19 (1986), 409–468.CrossRefGoogle Scholar
$\ell$
--adic representations associated with Hilbert modular forms, 
Ann. Sci. école Norm. Sup. (4)
, 19 (1986), 409–468.CrossRefGoogle Scholar $\mathbf{\mathcal{L}}$
-invariants of Hilbert Modular forms attached to definite quaternions, 
J. Number Theory
, 147 (2015), 633–665.CrossRefGoogle Scholar
$\mathbf{\mathcal{L}}$
-invariants of Hilbert Modular forms attached to definite quaternions, 
J. Number Theory
, 147 (2015), 633–665.CrossRefGoogle Scholar $p$
-adic
$p$
-adic 
 $L$
 functions, 
Invent. Math.
, 69 (1982), 171–208.CrossRefGoogle Scholar
$L$
 functions, 
Invent. Math.
, 69 (1982), 171–208.CrossRefGoogle Scholar $p$
-adic L-functions of modular forms, in Algebra and Number Theory 
(Hindustan Book Agency, Delhi, 2005), pp. 193–210.Google Scholar
$p$
-adic L-functions of modular forms, in Algebra and Number Theory 
(Hindustan Book Agency, Delhi, 2005), pp. 193–210.Google Scholar $p$
-adic Schottky groups, 
J. Reine Angew. Math.
, 400 (1989) 3–31.Google Scholar
$p$
-adic Schottky groups, 
J. Reine Angew. Math.
, 400 (1989) 3–31.Google Scholar $p$
-adic symmetric regions, 
Funct. Anal. Appl.
, 10 (1976), 107–115.CrossRefGoogle Scholar
$p$
-adic symmetric regions, 
Funct. Anal. Appl.
, 10 (1976), 107–115.CrossRefGoogle Scholar $F$
-isocrystals on open varieties, results and conjectures, in The Grothendieck Festschrift, Vol. II, 
Progr. Math.
, Vol. 87 (Birkhäuser Boston, 1990), pp. 219–248.Google Scholar
$F$
-isocrystals on open varieties, results and conjectures, in The Grothendieck Festschrift, Vol. II, 
Progr. Math.
, Vol. 87 (Birkhäuser Boston, 1990), pp. 219–248.Google Scholar ${\mathbb{Q}}_p$
-theory, 
J. Algebraic Geom.
, 6 (1997), 1–18.Google Scholar
${\mathbb{Q}}_p$
-theory, 
J. Algebraic Geom.
, 6 (1997), 1–18.Google Scholar $p$
-Adic L-functions and
$p$
-Adic L-functions and 
 $p$
-adic periods of modular forms, 
Invent. Math.
, 111 (1993), 407–447.CrossRefGoogle Scholar
$p$
-adic periods of modular forms, 
Invent. Math.
, 111 (1993), 407–447.CrossRefGoogle Scholar $p$
-adic symmetric spaces, 
Duke Math. J.
, 110 (2001), 253–278.CrossRefGoogle Scholar
$p$
-adic symmetric spaces, 
Duke Math. J.
, 110 (2001), 253–278.CrossRefGoogle Scholar $p$
-adic
$p$
-adic 
 $L$
-functions, Heegner cycles and monodromy modules attached to modular forms, 
Invent. Math.
, 154 (2003), 333–384.CrossRefGoogle Scholar
$L$
-functions, Heegner cycles and monodromy modules attached to modular forms, 
Invent. Math.
, 154 (2003), 333–384.CrossRefGoogle Scholar $p$
-adic analogs of the conjectures of Birch and Swinnerton-Dyer, 
Invent. Math.
, 84 (1986), 1–48.CrossRefGoogle Scholar
$p$
-adic analogs of the conjectures of Birch and Swinnerton-Dyer, 
Invent. Math.
, 84 (1986), 1–48.CrossRefGoogle Scholar $L$
-Functions (Academic Press, 
New York, 1990), pp. 284–414.Google Scholar
$L$
-Functions (Academic Press, 
New York, 1990), pp. 284–414.Google Scholar $p$
-Divisible Groups (Princeton University Press, 
Princeton, NJ, 1996).Google Scholar
$p$
-Divisible Groups (Princeton University Press, 
Princeton, NJ, 1996).Google Scholar $p$
-adic Hodge theory, 
Compos. Math.
, 145 (2009), 1081–1113.CrossRefGoogle Scholar
$p$
-adic Hodge theory, 
Compos. Math.
, 145 (2009), 1081–1113.CrossRefGoogle Scholar $p$
-adically uniformized varieties, 
Math. Ann.
, 293 (1992), 623–650.CrossRefGoogle Scholar
$p$
-adically uniformized varieties, 
Math. Ann.
, 293 (1992), 623–650.CrossRefGoogle Scholar $p$
-adic upper half plane, 
Math. Ann.
, 284 (1989), 647–674.CrossRefGoogle Scholar
$p$
-adic upper half plane, 
Math. Ann.
, 284 (1989), 647–674.CrossRefGoogle Scholar $p$
-adic
$p$
-adic 
 $L$
-functions and a
$L$
-functions and a 
 $p$
-adic Poisson kernel, 
Invent. Math.
, 101 (1990), 395–410.CrossRefGoogle Scholar
$p$
-adic Poisson kernel, 
Invent. Math.
, 101 (1990), 395–410.CrossRefGoogle Scholar $p$
-Adic uniformization of unitary Shimura varieties, 
Publ. Math. IHES
, 87 (1998), 57–119.CrossRefGoogle Scholar
$p$
-Adic uniformization of unitary Shimura varieties, 
Publ. Math. IHES
, 87 (1998), 57–119.CrossRefGoogle Scholar