Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-jjt9s Total loading time: 0.352 Render date: 2021-06-19T17:48:48.601Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

SPECTRAL TRANSFER FOR METAPLECTIC GROUPS. I. LOCAL CHARACTER RELATIONS

Published online by Cambridge University Press:  07 December 2016

Wen-Wei Li
Affiliation:
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 55, Zhongguancun donglu, 100190 Beijing, People’s Republic of China University of Chinese Academy of Sciences, 19A, Yuquan lu, 100049 Beijing, People’s Republic of China (wwli@math.ac.cn)
Corresponding
E-mail address:

Abstract

Let $\widetilde{\text{Sp}}(2n)$ be the metaplectic covering of $\text{Sp}(2n)$ over a local field of characteristic zero. The core of the theory of endoscopy for $\widetilde{\text{Sp}}(2n)$ is the geometric transfer of orbital integrals to its elliptic endoscopic groups. The dual of this map, called the spectral transfer, is expected to yield endoscopic character relations which should reveal the internal structure of $L$-packets. As a first step, we characterize the image of the collective geometric transfer in the non-archimedean case, then reduce the spectral transfer to the case of cuspidal test functions by using a simple stable trace formula. In the archimedean case, we establish the character relations and determine the spectral transfer factors by rephrasing the works by Adams and Renard.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Adams, J., Lifting of characters on orthogonal and metaplectic groups, Duke Math. J. 92(1) (1998), 129178.CrossRefGoogle Scholar
Arthur, J., The invariant trace formula. II. Global theory, J. Amer. Math. Soc. 1(3) (1988), 501554.CrossRefGoogle Scholar
Arthur, J., Unipotent automorphic representations: conjectures, Astérisque (171–172) (1989), 1371. Orbites unipotentes et représentations, II. Astérisque, 171172.Google Scholar
Arthur, J., On elliptic tempered characters, Acta Math. 171(1) (1993), 73138.CrossRefGoogle Scholar
Arthur, J., On the Fourier transforms of weighted orbital integrals, J. Reine Angew. Math. 452 (1994), 163217.Google Scholar
Arthur, J., On local character relations, Selecta Math. (N.S.) 2(4) (1996), 501579.CrossRefGoogle Scholar
Arthur, J., A stable trace formula. I. General expansions, J. Inst. Math. Jussieu 1(2) (2002), 175277.CrossRefGoogle Scholar
Arthur, J., Germ expansions for real groups. http://www.math.toronto.edu/arthur, 2004.Google Scholar
Arthur, J., A note on L-packets, Pure Appl. Math. Q. 2(1) (2006), 199217. Special Issue: In honor of John H. Coates. Part 1.CrossRefGoogle Scholar
Arthur, J., The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups, American Mathematical Society Colloquium Publications, Volume 61, (American Mathematical Society, Providence, RI, 2013).CrossRefGoogle Scholar
Barbasch, D. and Moy, A., A new proof of the Howe conjecture, J. Amer. Math. Soc. 13(3) (2000), 639650 (electronic).CrossRefGoogle Scholar
Borel, A., Automorphic L-functions, in Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State University, Corvallis, OR, 1977), Part 2, Proceedings of Symposia in Pure Mathematics, Volume XXXIII, pp. 2761 (American Mathematical Society, Providence, R.I., 1979).Google Scholar
Borovoi, M., Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc. 132(626) (1998), viii+50.Google Scholar
Bouaziz, A., Intégrales orbitales sur les groupes de Lie réductifs, Ann. Sci. Éc. Norm. Supér. (4) 27(5) (1994), 573609.CrossRefGoogle Scholar
Chaudouard, P.-H., Le transfert lisse des intégrales orbitales d’après Waldspurger, in On the Stabilization of the Trace Formula, Stabilization of the Trace Formula, Shimura Varieties, and Arithmetic Applications, Volume 1, pp. 145180 (International Press, Somerville, MA, 2011).Google Scholar
Clozel, L. and Delorme, P., Le théorème de Paley–Wiener invariant pour les groupes de Lie réductifs, Invent. Math. 77(3) (1984), 427453.CrossRefGoogle Scholar
Clozel, L., Harris, M., Labesse, J.-P. and Ngô, B.-C. (Eds.) On the Stabilization of the Trace Formula, Stabilization of the Trace Formula, Shimura Varieties, and Arithmetic Applications, Volume 1 (International Press, Somerville, MA, 2011).Google Scholar
Duflo, M., Représentations irréductibles des groupes semi-simples complexes, in Analyse harmonique sur les groupes de Lie (Sém., Nancy–Strasbourg, 1973–75), Lecture Notes in Mathematica, Volume 497, pp. 2688 (Springer, Berlin, 1975).Google Scholar
Finis, T., Lapid, E. and Müller, W., On the spectral side of Arthur’s trace formula—absolute convergence, Ann. of Math. (2) 174(1) (2011), 173195.CrossRefGoogle Scholar
Henniart, G., Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math. 139(2) (2000), 439455.CrossRefGoogle Scholar
Hiraga, K. and Saito, H., On L-packets for inner forms of SL n , Mem. Amer. Math. Soc. 215(1013) (2012), vi+97.Google Scholar
Knapp, A. W. and Vogan, D. A. Jr., Cohomological Induction and Unitary Representations, Princeton Mathematical Series, Volume 45 (Princeton University Press, Princeton, NJ, 1995).CrossRefGoogle Scholar
Knapp, A. W. and Zuckerman, G. J., Classification of irreducible tempered representations of semisimple groups, Ann. of Math. (2) 116(2) (1982), 389455.CrossRefGoogle Scholar
Knapp, A. W. and Zuckerman, G. J., Classification of irreducible tempered representations of semisimple groups. II, Ann. of Math. (2) 116(3) (1982), 457501.CrossRefGoogle Scholar
Kottwitz, R. E., Rational conjugacy classes in reductive groups, Duke Math. J. 49(4) (1982), 785806.CrossRefGoogle Scholar
Kottwitz, R. E., Stable trace formula: elliptic singular terms, Math. Ann. 275(3) (1986), 365399.CrossRefGoogle Scholar
Kottwitz, R. E. and Rogawski, J. D., The distributions in the invariant trace formula are supported on characters, Canad. J. Math. 52(4) (2000), 804814.CrossRefGoogle Scholar
Kottwitz, R. E. and Shelstad, D., Foundations of twisted endoscopy, Astérisque 255 (1999), vi+190.Google Scholar
Labesse, J.-P., Cohomologie, stabilisation et changement de base, Astérisque 257 (1999), 161. Appendix A by Laurent Clozel and Labesse, and Appendix B by Lawrence Breen.Google Scholar
Li, W.-W., Transfert d’intégrales orbitales pour le groupe métaplectique, Compos. Math. 147(2) (2011), 524590.CrossRefGoogle Scholar
Li, W.-W., La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale, Ann. Sci. Éc. Norm. Supér. (4) 45(5) (2012), 787859.CrossRefGoogle Scholar
Li, W.-W., Le lemme fondamental pondéré pour le groupe métaplectique, Canad. J. Math. 64(3) (2012), 497543.CrossRefGoogle Scholar
Li, W.-W., La formule des traces pour les revêtements de groupes réductifs connexes III: Le développement spectral fin, Math. Ann. 356(3) (2013), 10291064.CrossRefGoogle Scholar
Li, W.-W., La formule des traces pour les revêtements de groupes réductifs connexes. I. Le développement géométrique fin, J. Reine Angew. Math. 686 (2014), 37109.Google Scholar
Li, W.-W., La formule des traces pour les revêtements de groupes réductifs connexes. IV. Distributions invariantes, Ann. Inst. Fourier 64(6) (2014), 23792448.CrossRefGoogle Scholar
Li, W.-W., La formule des traces stable pour le groupe métaplectique: les termes elliptiques, Invent. Math. 202(2) (2015), 743838.CrossRefGoogle Scholar
Mœglin, C., Vignéras, M.-F. and Waldspurger, J.-L., Correspondances de Howe sur un corps p-adique, Lecture Notes in Mathematics, Volume 1291 (Springer-Verlag, Berlin, 1987).CrossRefGoogle Scholar
Renard, D., Transfert d’intégrales orbitales entre Mp(2n, R) et SO(n + 1, n), Duke Math. J. 95(2) (1998), 425450.CrossRefGoogle Scholar
Renard, D., Endoscopy for Mp(2n, R), Amer. J. Math. 121(6) (1999), 12151243.CrossRefGoogle Scholar
Shelstad, D., Characters and inner forms of a quasi-split group over R , Compos. Math. 39(1) (1979), 1145.Google Scholar
Shelstad, D., L-indistinguishability for real groups, Math. Ann. 259(3) (1982), 385430.CrossRefGoogle Scholar
Shelstad, D., Tempered endoscopy for real groups. III. Inversion of transfer and L-packet structure, Represent. Theory 12 (2008), 369402.CrossRefGoogle Scholar
Shelstad, D., Tempered endoscopy for real groups. II. Spectral transfer factors, in Automorphic Forms and the Langlands Program, Advanced Lectures in Mathematics (ALM), Volume 9, pp. 236276 (International Press, Somerville, MA, 2010).Google Scholar
Trèves, F., Topological Vector Spaces, Distributions and Kernels (Academic Press, New York, 1967).Google Scholar
Vignéras, M.-F., Caractérisation des intégrales orbitales sur un groupe réductif p-adique, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3) (1981), 945961.Google Scholar
Vogan, D. A. Jr., The algebraic structure of the representation of semisimple Lie groups. I, Ann. of Math. (2) 109(1) (1979), 160.CrossRefGoogle Scholar
Waldspurger, J.-L., Représentation métaplectique et conjectures de Howe, Astérisque 152–153(3) (1988), 8599. 1987. Séminaire Bourbaki, Vol. 1986/87.Google Scholar
Waldspurger, J.-L., Correspondances de Shimura et quaternions, Forum Math. 3(3) (1991), 219307.CrossRefGoogle Scholar
Waldspurger, J.-L., L’endoscopie tordue n’est pas si tordue, Mem. Amer. Math. Soc. 194(908) (2008), x+261.Google Scholar
Waldspurger, J.-L., Préparation à la stabilisation de la formule des traces tordue IV: transfert spectral archimédien, 2013. http://www.math.jussieu.fr/∼waldspur.Google Scholar
Waldspurger, J.-L., Stabilisation de la formule des traces tordue I: endoscopie tordue sur un corps local, 2014. http://www.math.jussieu.fr/∼waldspur.Google Scholar
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

SPECTRAL TRANSFER FOR METAPLECTIC GROUPS. I. LOCAL CHARACTER RELATIONS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

SPECTRAL TRANSFER FOR METAPLECTIC GROUPS. I. LOCAL CHARACTER RELATIONS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

SPECTRAL TRANSFER FOR METAPLECTIC GROUPS. I. LOCAL CHARACTER RELATIONS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *