1.
Atiyah, M. and Schmid, W., A geometric construction of the discrete series for
semisimple Lie groups, Invent. Math.
42 (1977),
1–62.

2.
Borel, A., Admissible representations of a semisimple
*p*-adic group over a local field with vectors fixed under an
Iwahori subgroup, Invent. Math.
35 (1976),
233–259.

3.
Barbasch, D., Ciubotaru, D. and Trapa, P., The Dirac operator for graded affine Hecke
algebras, Acta Math.
209
(2) (2012),
197–227.

4.
Barbasch, D. and Moy, A., A unitarity criterion for
$p$
-adic groups, Invent. Math.
98 (1989),
19–38.
5.
Baum, P. and Connes, A., Geometric *K*-theory for Lie groups and
foliations, Enseign. Math. (2)
46
(1–2) (2000),
3–42.

6.
Baum, P., Connes, A. and Higson, N., Classifying space for proper actions and
*K*-theory of group
${C}^{\ast } $
-algebras, in
*C*
^{∗}-algebras: 1943–1993 (San Antonio, TX, 1993),
Contemp. Math., Volume 167,
pp. 240–291 (Amer. Math.
Soc., 1994).
7.
Beynon, W. and Spaltenstein, N., Green functions of finite Chevalley groups of type
${E}_{n} $
(
$n= 6, 7, 8$
), J. Algebra
88
(2) (1984),
584–614.
8.
Carter, R. W., Finite Groups of Lie Type, Pure and Applied Math.
(New York), p. xii+544pp
(Wiley-Interscience,
NY, 1985).

9.
Ciubotaru, D., Spin representations of Weyl groups and Springer’s
correspondence, J. Reine Angew. Math.
671 (2012),
199–222.

10.
Ciubotaru, D. and Kato, S., Tempered modules in the exotic Deligne–Langlands
classification, Adv. Math.
226 (2011),
1538–1590.

11.
Ciubotaru, D., Kato, M. and Kato, S., On characters and formal degrees of discrete series of
classical affine Hecke algebras, Invent. Math.
187 (2012),
589–635.

12.
Ciubotaru, D. and Trapa, P., Characters of Springer representations on elliptic conjugacy
classes, Duke Math. J.
162
(2) (2013),
201–223.

13.
Delorme, P. and Opdam, E., Schwartz algebra of an affine Hecke algebra,
J. Reine Angew. Math.
625 (2008),
59–114.

14.
Drinfeld, V. G., Degenerate affine Hecke algebras and
yangians, Funktsional. Anal. i Prilozhen.
20
(1) (1986), 69–70 (in
Russian); Engl. transl.: Functional Anal. Appl. **20**(1) (1986),
62–64.

15.
Drinfeld, V. G., Quasi-Hopf algebras, Algebra i
Analiz
1
(6) (1989), 114–148 (in
Russian); Engl. transl. in Leningrad Math, J. **1** (1990),
1419–1457.

16.
Emsiz, E., Opdam, E. M. and Stokman, J. V., Trigonometric Cherednik algebra at critical level and quantum
many-body problems, Selecta Math. (N.S.)
14
(3–4) (2009),
571–605.

17.
Heckman, G. J. and Opdam, E. M., Yang’s system of particles and Hecke
algebras, Ann. of Math.
45 (1997),
139–173.

18.
Huang, J. S. and Pandžić, P., Dirac cohomology, unitary representations and a proof of a
conjecture of Vogan, J. Amer. Math. Soc.
15 (2002),
185–202.

19.
Kato, S., An exotic Deligne–Langlands correspondence for symplectic
groups, Duke Math. J.
148
(2) (2009),
305–371.

20.
Kazhdan, D. and Lusztig, G., Proof of Deligne–Langlands conjecture for Hecke
algebras, Invent. Math.
87 (1987),
153–215.

21.
Lafforgue, V., Banach
$KK$
-theory and the Baum–Connes conjecture,
ICM
III
(1–3) (2002),
795–811.
22.
Lusztig, G., Affine Hecke algebras and their graded
version, J. Amer. Math. Soc.
2
(3) (1989),
599–635.

23.
Lusztig, G., Cuspidal local systems and graded Hecke algebras
III, Represent. Theory
6 (2002),
202–242.

24.
Morris, A., Projective characters of exceptional Weyl
groups, J. Algebra
29 (1974),
567–586.

25.
Opdam, E. M., On the spectral decomposition of affine Hecke
algebras, J. Math. Jussieu
3
(4) (2004),
531–648.

26.
Opdam, E. M., The central support of the Plancherel measure of an affine
Hecke algebra, Mosc. Math. J.
7 (2007), 723–741,
767–768.

27.
Opdam, E. and Solleveld, M., Homological algebra for affine Hecke
algebras, Adv. Math.
220
(5) (2009),
1549–1601.

28.
Opdam, E. and Solleveld, M., Discrete series characters for affine Hecke algebras and
their formal degrees, Acta Math.
205 (2010),
105–187.

29.
Parthasarathy, R., Dirac operator and the discrete series,
Ann. Math. (2)
96 (1972),
1–30.

30.
Read, E. W., On projective representations of the finite reflection groups
of type
${B}_{l} $
and
${D}_{l} $
, J. Lond. Math. Soc. (2)
10 (1975),
129–142.
31.
Reeder, M., Euler–Poincaré pairings and elliptic representations of Weyl
groups and *p*-adic groups, Compositio
Math.
129
(2) (2001),
149–181.

32.
Slooten, K., Induced discrete series representations for Hecke algebras of
types
${ B}_{n}^{ \mathsf{aff} } $
and
${ C}_{n}^{ \mathsf{aff} } $
, Int. Math. Res. Not. (10)
(2008), Art. ID rnn023, 41 pp.
33.
Solleveld, M., On the classification of irreducible representations of
affine Hecke algebras with unequal parameters, Represent.
Theory
16 (2012),
1–87.