Hostname: page-component-54dcc4c588-54gsr Total loading time: 0 Render date: 2025-09-30T15:26:40.584Z Has data issue: false hasContentIssue false

AVERAGING FUNCTORS IN FARGUES’ PROGRAM FOR $\mathrm {GL}_n$

Published online by Cambridge University Press:  24 September 2025

Johannes Anschütz
Affiliation:
https://ror.org/03xjwb503Université Paris-Saclay , Laboratoire de Mathématiques d’Orsay, Orsay, France (janschuetz@math.cnrs.fr)
Arthur-César Le Bras*
Affiliation:
https://ror.org/02hwgty18Université de Strasbourg UFR de Mathématique et d’Informatique , France

Abstract

We study the so-called averaging functors from the geometric Langlands program in the setting of Fargues’ program. This makes explicit certain cases of the spectral action which was recently introduced by Fargues-Scholze in the local Langlands program for $\mathrm {GL}_n$. Using these averaging functors, we verify (without using local Langlands) that the Fargues-Scholze parameters associated to supercuspidal modular representations of $\mathrm {GL}_2$ are irreducible. We also attach to any irreducible $\ell $-adic Weil representation of degree n an Hecke eigensheaf on $\mathrm {Bun}_n$ and show, using the local Langlands correspondence and recent results of Hansen and Hansen-Kaletha-Weinstein, that it satisfies most of the requirements of Fargues’ conjecture for $\mathrm {GL}_n$.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bernstein, JN, Deligne, P, et al. (1984) Le centre de Bernstein. In Representations of Reductive Groups over a Local Field. Paris: Hermann, 132.Google Scholar
Bushnell, CJ and Henniart, G (2003) Generalized Whittaker models and the Bernstein center. Amer. J. Math. 125(3), 513547.10.1353/ajm.2003.0015CrossRefGoogle Scholar
Dat, J-F (2012) Théorie de lubin–tate non abélienne l-entière. Duke Math. J. 161(6), 9511010 (15 April 2012). DOI: 10.1215/00127094-1548425 10.1215/00127094-1548425CrossRefGoogle Scholar
Dat, J-F, Helm, D, Kurinczuk, R and Moss, G (2025) Moduli of langlands parameters. J. Eur. Math. Soc. (JEMS) 27(5), 18271927.10.4171/jems/1599CrossRefGoogle Scholar
Drevon, B and Sécherre, V (2021) Block decomposition of the category of $\ell$ -modular smooth representations of finite length of $gl\left(m,d\right)$ . arXiv preprint 2102.05898.Google Scholar
Drinfeld, VG (1983) Two-dimensional $\ell$ -adic representations of the fundamental group of a curve over a finite field and automorphic forms on $GL(2)$ . Amer. J. Math. 105(1), 85114.10.2307/2374382CrossRefGoogle Scholar
Fargues, L (2016) Geometrization of the local Langlands correspondence: an overview. arXiv preprint arXiv:1602.00999.Google Scholar
Fargues, L (2020) G-torseurs en théorie de hodge p-adique. Available at https://webusers.imj-prg.fr/~laurent.fargues/Prepublications.html.Google Scholar
Fargues, L (2006) Dualité de Poincaré et involution de Zelevinsky dans la cohomologie étale équivariante des espaces analytiques rigides. https://webusers.imj-prg.fr/~laurent.fargues/Prepublications.html.Google Scholar
Fargues, L (2017) Simple connexité des fibres d’une application d’Abel-Jacobi et corps de classe local. arXiv preprint 1705.01526.Google Scholar
Fargues, L and Scholze, P (2021) Geometrization of the local Langlands correspondence. arXiv preprint arXiv:2102.13459.Google Scholar
Frenkel, E, Gaitsgory, D and Vilonen, K (2002) On the geometric Langlands conjecture. J. Amer. Math. Soc. 15(2), 367417.10.1090/S0894-0347-01-00388-5CrossRefGoogle Scholar
Gaisin, I and Imai, N (2016) Non-semi-stable loci in hecke stacks and fargues’ conjecture. arXiv preprint 1608.07446.Google Scholar
Gaitsgory, D A generalized vanishing conjecture. Available at https://people.mpim-bonn.mpg.de/gaitsgde/GL/GenVan.pdf.Google Scholar
Gaitsgory, D (2004) On a vanishing conjecture appearing in the geometric Langlands correspondence. Ann. of Math. 160(2), 617682.10.4007/annals.2004.160.617CrossRefGoogle Scholar
Hamannn, L (2022) Geometric eisenstein series, intertwining operators, and shin’s averaging formula. arXiv preprint arXiv:2209.08175.Google Scholar
Hamann, L and Imai, N (2025) Dualizing complexes on the moduli of parabolic bundles. J. Reine Angew. Math. (0).Google Scholar
Hansen, D On the supercuspidal cohomology of basic local Shimura varieties. http://www.davidrenshawhansen.net/.Google Scholar
Hansen, D, Kaletha, T and Weinstein, J (2022) On the Kottwitz conjecture for local shtuka spaces. In Forum of Mathematics, Pi, vol. 10. Cambridge: Cambridge University Press, e13. doi: 10.1017/fmp.2022.7.Google Scholar
Henniart, G and Vignéras, M-F (2020) Representations of a reductive $p$ -adic group in characteristic distinct from $p$ . arXiv preprint:2010.06462.Google Scholar
Gel’fand, I M Kazhdan, D (1972) On the representation of the group $GL(n,K)$ where $K$ is a local field. Funct Anal Its Appl. 6, 315317. https://doi.org/10.1007/BF01077652.CrossRefGoogle Scholar
Laumon, G (1987) Correspondance de Langlands géométrique pour les corps de fonctions. Duke Math. J. 54(2), 309359.10.1215/S0012-7094-87-05418-4CrossRefGoogle Scholar
Sécherre, V, Minguez, A and Stevens, S (2014) Types modulo $\ell$ pour les formes intérieures de $G{L}_n$ sur un corps local non archimédien. Proc. Lond. Math. Soc. 109(4), 823891.Google Scholar
Scholze, P (2017) Étale cohomology of diamonds. Available at the author’s webpage: https://people.mpim-bonn.mpg.de/scholze/papers.html#Papers.Google Scholar
Scholze, P and Weinstein, J (2014) $p$ -adic geometry. notes from lecture course at UC Berkeley. Available at http://www.math.uni-bonn.de/people/scholze/Berkeley.pdf.Google Scholar
Vignéras, M-F (1989) Représentations modulaires de $GL\left(2,F\right)$ en caractéristique $\ell$ , $F$ corps $p$ -adique, $p\ne \ell$ . Compos. Math. 72(1), 3366.Google Scholar
Zhu, X (2020) Coherent sheaves on the stack of Langlands parameters. arXiv preprint 2008.02998.Google Scholar