Skip to main content
    • Aa
    • Aa



Let $E_{\unicode[STIX]{x1D706}}$ be the Legendre family of elliptic curves. Given $n$ points $P_{1},\ldots ,P_{n}\in E_{\unicode[STIX]{x1D706}}(\overline{\mathbb{Q}(\unicode[STIX]{x1D706})})$ , linearly independent over $\mathbb{Z}$ , we prove that there are at most finitely many complex numbers $\unicode[STIX]{x1D706}_{0}$ such that $E_{\unicode[STIX]{x1D706}_{0}}$ has complex multiplication and $P_{1}(\unicode[STIX]{x1D706}_{0}),\ldots ,P_{n}(\unicode[STIX]{x1D706}_{0})$ are linearly dependent over End $(E_{\unicode[STIX]{x1D706}_{0}})$ . This implies a positive answer to a question of Bertrand and, combined with a previous work in collaboration with Capuano, proves the Zilber–Pink conjecture for a curve in a fibered power of an elliptic scheme when everything is defined over $\overline{\mathbb{Q}}$ .

Hide All
1. André Y., Shimura varieties, subvarieties and CM points, Six Lectures at the Franco-Taiwan Arithmetic Festival (2001),
2. Barroero F. and Capuano L., Linear relations in families of powers of elliptic curves, Algebra Number Theory 10(1) (2016), 195214.
3. Bertrand D., Extensions de D-modules et groupes de Galois différentiels, in p-Adic Analysis (Trento, 1989), Lecture Notes in Mathematics, Volume 1454, pp. 125141 (Springer, Berlin, 1990).
4. Bertrand D., Unlikely intersections in Poincaré biextensions over elliptic schemes, Notre Dame J. Form. Log. 54(3–4) (2013), 365375.
5. Bilu Y., Masser D. and Zannier U., An effective ‘theorem of André’ for CM-points on a plane curve, Math. Proc. Cambridge Philos. Soc. 154(1) (2013), 145152.
6. Bombieri E. and Gubler W., Heights in Diophantine Geometry, New Mathematical Monographs, Volume 4, (Cambridge University Press, Cambridge, 2006).
7. Breuer F., Heights of CM points on complex affine curves, Ramanujan J. 5(3) (2001), 311317.
8. Colmez P., Sur la hauteur de Faltings des variétés abéliennes à multiplication complexe, Compos. Math. 111(3) (1998), 359368.
9. David S., Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. Fr. (N.S.) 62 (1995), iv+143.
10. David S., Points de petite hauteur sur les courbes elliptiques, J. Number Theory 64(1) (1997), 104129.
11. van den Dries L., Tame Topology and O-minimal Structures, London Mathematical Society Lecture Note Series, Volume 248 (Cambridge University Press, Cambridge, 1998).
12. van den Dries L. and Miller C., On the real exponential field with restricted analytic functions, Israel J. Math. 85(1–3) (1994), 1956.
13. van den Dries L. and Miller C., Geometric categories and o-minimal structures, Duke Math. J. 84(2) (1996), 497540.
14. Ford L., Automorphic Functions, second edition (American Mathematical Society, Providence, RI, 1951).
15. Galateau A., Une minoration du minimum essentiel sur les variétés abéliennes, Comment. Math. Helv. 85(4) (2010), 775812.
16. Habegger P., Special points on fibered powers of elliptic surfaces, J. Reine Angew. Math. 685 (2013), 143179.
17. Habegger P. and Pila J., O-minimality and certain atypical intersections, Ann. Sci. Éc. Norm. Supér. (4) 49(4) (2016), 813858.
18. Hartshorne R., Algebraic Geometry, Graduate Texts in Mathematics, Volume 52, (Springer, New York–Heidelberg, 1977).
19. Lang S., Elliptic Functions (Addison-Wesley Publishing Co., Inc., Reading, MA–London–Amsterdam, 1973). With an appendix by J. Tate.
20. Masser D., Linear relations on algebraic groups, in New Advances in Transcendence Theory (Durham, 1986), pp. 248262 (Cambridge University Press, Cambridge, 1988).
21. Masser D., Counting points of small height on elliptic curves, Bull. Soc. Math. France 117(2) (1989), 247265.
22. Masser D. and Zannier U., Torsion anomalous points and families of elliptic curves, C. R. Math. Acad. Sci. Paris 346(9–10) (2008), 491494.
23. Masser D. and Zannier U., Torsion anomalous points and families of elliptic curves, Amer. J. Math. 132(6) (2010), 16771691.
24. Masser D. and Zannier U., Torsion points on families of squares of elliptic curves, Math. Ann. 352(2) (2012), 453484.
25. Peterzil Y. and Starchenko S., Uniform definability of the Weierstrass functions and generalized tori of dimension one, Selecta Math. (N.S.) 10(4) (2004), 525550.
26. Pila J., Rational points of definable sets and results of André–Oort–Manin–Mumford type, Int. Math. Res. Not. IMRN 13 (2009), 24762507.
27. Pila J. and Zannier U., Rational points in periodic analytic sets and the Manin–Mumford conjecture, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19(2) (2008), 149162.
28. Pink R., A common generalization of the conjectures of André–Oort, Manin–Mumford and Mordell–Lang. Manuscript dated 17th April, 2005.
29. Silverman J. H., Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math. 342 (1983), 197211.
30. Silverman J. H., The Arithmetic of Elliptic Curves, second edition, Graduate Texts in Mathematics, Volume 106, (Springer, Dordrecht, 2009).
31. Viada E., The intersection of a curve with a union of translated codimension-two subgroups in a power of an elliptic curve, Algebra Number Theory 2(3) (2008), 249298.
32. Zannier U., Some Problems of Unlikely Intersections in Arithmetic and Geometry, Annals of Mathematics Studies, Volume 181, (Princeton University Press, 2012). With appendixes by David Masser.
33. Zimmer H. G., On the difference of the Weil height and the Néron–Tate height, Math. Z. 147(1) (1976), 3551.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 56 *
Loading metrics...

* Views captured on Cambridge Core between 2nd August 2017 - 21st October 2017. This data will be updated every 24 hours.