Hostname: page-component-cb9f654ff-rkzlw Total loading time: 0 Render date: 2025-08-28T13:27:17.632Z Has data issue: false hasContentIssue false

A $C^r$-CONNECTING LEMMA FOR LORENZ ATTRACTORS AND ITS APPLICATION ON THE SPACE OF ERGODIC MEASURES

Published online by Cambridge University Press:  26 August 2025

Yi Shi
Affiliation:
School of Mathematics, https://ror.org/02v51f717Sichuan University , Chengdu, 610065, China (shiyi@scu.edu.cn)
Xueting Tian
Affiliation:
School of Mathematical Sciences, https://ror.org/013q1eq08Fudan University , Shanghai, 200433, P.R. China (xuetingtian@fudan.edu.cn)
Xiaodong Wang*
Affiliation:
School of Mathematical Sciences, CMA-Shanghai, https://ror.org/0220qvk04Shanghai Jiao Tong University , Shanghai, 200240, P.R. China

Abstract

For every , we prove a $C^r$-connecting lemma for Lorenz attractors. To be precise, for a Lorenz attractor of a $3$-dimensional $C^r$ ($r\geq 2$) vector field, a heteroclinic orbit associated to the singularity and a critical element can be created through arbitrarily small $C^r$-perturbations. As an application, we show that for $C^r$-dense geometric Lorenz attractors, the Dirac measure of the singularity is isolated inside the space of ergodic measures, and thus, the ergodic measure space is not connected, while for $C^r$-generic geometric Lorenz attractors, the space of ergodic measures is path connected with dense periodic measures. In particular, the generic part proves a conjecture proposed by C. Bonatti [11, Conjecture 2] in $C^r$-topology for Lorenz attractors.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Y. Shi was partially supported by National Key R&D Program of China (2021YFA1001900) and NSFC (12090015).

X. Tian was partially supported by NSFC (12471182, 12071082).

X. Wang was the corresponding author and was partially supported by National Key R&D Program of China (2021YFA1001900), NSFC (12071285) and Innovation Program of Shanghai Municipal Education Commission (No. 2021-01-07-00-02-E00087)

References

Abdenur, F, Bonatti, C and Crovisier, S (2011) Nonuniform hyperbolicity for ${C}^1$ -generic diffeomorphisms. Israel J. Math. 183, 160.10.1007/s11856-011-0041-5CrossRefGoogle Scholar
Afraĭmovič, VS, Bykov, VV and Sil’nikov, LP (1977) The origin and structure of the Lorenz attractor. (Russian) Dokl. Akad. Nauk SSSR 234, 336339.Google Scholar
Araújo, V and Melbourne, I (2019) Mixing properties and statistical limit theorems for singular hyperbolic flows without a smooth stable foliation. Adv. Math. 349, 212245.10.1016/j.aim.2019.04.007CrossRefGoogle Scholar
Araújo, V and Pacifico, MJ (2010) Three-Dimensional Flows. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 53. Heidelberg: Springer.10.1007/978-3-642-11414-4CrossRefGoogle Scholar
Arbieto, A, Morales, CA and Santiago, B (2015) Lyapunov stability and sectional-hyperbolicity for higher-dimensional flows. Math. Ann. 361, 6775.10.1007/s00208-014-1061-3CrossRefGoogle Scholar
Arnaud, MC (2001) Création de connexions en topologie ${C}^1$ . Ergodic Theory & Dynam. Systems 21, 339381.10.1017/S0143385701001183CrossRefGoogle Scholar
Asaoka, M and Irie, K (2016) A closing lemma for Hamiltonian diffeomorphisms of closed surfaces. Geom. Funct. Anal. 26, 12451254.10.1007/s00039-016-0386-3CrossRefGoogle Scholar
Bautista, S (2004) The geometric Lorenz attractor is a homoclinic class. Bol. Mat. 11, 6978.Google Scholar
Bochi, J, Bonatti, C and Gelfert, K (2018) Dominated Pesin theory: Convex sum of hyperbolic measures. Israel J. Math. 226, 387417.10.1007/s11856-018-1699-8CrossRefGoogle Scholar
Bomfim, T, Torres, MJ and Varandas, P (2017) Topological features of flows with the reparametrized gluing orbit property. J. Differential Equations 262, 42924313.10.1016/j.jde.2017.01.008CrossRefGoogle Scholar
Bonatti, C (2011) Towards a global view of dynamical systems, for the ${C}^1$ -topology. Ergodic Theory & Dynam. Systems 31, 959993.10.1017/S0143385710000891CrossRefGoogle Scholar
Bonatti, C and Crovisier, S (2004) Récurrence et généricité. Invent. Math. 158, 33104.10.1007/s00222-004-0368-1CrossRefGoogle Scholar
Bonatti, C, Crovisier, S, Gourmelon, N and Potrie, R (2014) Tame dynamics and robust transitivity chain-recurrence classes versus homoclinic classes. Trans. Amer. Math. Soc. 366, 48494871.10.1090/S0002-9947-2014-06261-2CrossRefGoogle Scholar
Bonatti, C and da Luz, A (2021) Star flows and multisingular hyperbolicity. J. Eur. Math. Soc. 23, 26492705.10.4171/jems/1064CrossRefGoogle Scholar
Bonatti, C, Díaz, LJ and Viana, M (2005) Dynamics Beyond Uniform Hyperbolicity . A Global Geometric and Probabilistic Perspective. Encyclopaedia of Mathematical Sciences, vol. 102. Mathematical Physics, III. Berlin: Springer-Verlag.Google Scholar
Bonatti, C and Zhang, J (2019) Periodic measures and partially hyperbolic homoclinic classes. Trans. Amer. Math. Soc. 372, 755802.10.1090/tran/7252CrossRefGoogle Scholar
Bowen, R (1971) Periodic points and measures for Axiom A diffeomorphisms. Trans. Amer. Math. Soc. 154, 377397.Google Scholar
Bowen, R (1972) Periodic orbits for hyperbolic flows. Amer. J. Math. 94, 130.10.2307/2373590CrossRefGoogle Scholar
Brin, M and Pesin, Y (1974) Partially hyperbolic dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat. 38, 170212.Google Scholar
Carmona, J, Carrasco-Olivera, D and San Martín, B (2017) On the ${C}^1$ robust transitivity of the geometric Lorenz attractor. J. Differential Equations 262, 59285938.10.1016/j.jde.2017.02.019CrossRefGoogle Scholar
Crovisier, S (2006) Periodic orbits and chain-transitive sets of ${C}^1$ -diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 104, 87141.10.1007/s10240-006-0002-4CrossRefGoogle Scholar
Crovisier, S (2013) Perturbation de la dynamique de difféomorphismes en petite régularité. Astérisque 354, x+164.Google Scholar
Crovisier, S (2011) Partial hyperbolicity far from homoclinic bifurcations. Adv. Math. 226, 673726.10.1016/j.aim.2010.07.013CrossRefGoogle Scholar
Crovisier, S and Pujals, E (2018) Strongly dissipative surface diffeomorphisms. Comment. Math. Helv. 93, 377400.10.4171/cmh/438CrossRefGoogle Scholar
Crovisier, S and Yang, D (2021) Robust transitivity of singular hyperbolic attractors. Math. Z. 298, 469488.10.1007/s00209-020-02618-1CrossRefGoogle Scholar
de Melo, W and Palis, J (1980) Moduli of stability for diffeomorphisms. In Global Theory of Dynamical Systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979). Lecture Notes in Math., vol. 819. Berlin: Springer, 318339.10.1007/BFb0086996CrossRefGoogle Scholar
de Melo, W and Palis, J (1982) Geometric Theory of Dynamical Systems. Translated from the Portuguese by A. K. Manning. Springer-Verlag, New York-Berlin.Google Scholar
Díaz, LJ, Gelfert, K, Marcarini, T and Rams, M (2019) The structure of the space of ergodic measures of transitive partially hyperbolic sets. Monatsh. Math. 190, 441479.10.1007/s00605-019-01325-2CrossRefGoogle Scholar
Gan, S and Shi, Y (2022) ${C}^r$ -closing lemma for partially hyperbolic diffeomorphisms with 1D-center bundle. Adv. Math 407, Paper No. 108553, 76 pp.10.1016/j.aim.2022.108553CrossRefGoogle Scholar
Gelfert, K and Kwietniak, D (2018) On density of ergodic measures and generic points. Ergodic Theory & Dynam. Systems 38, 17451767.10.1017/etds.2016.97CrossRefGoogle Scholar
Gorodetski, A and Pesin, Y (2017) Path connectedness and entropy density of the space of hyperbolic ergodic measures. In Modern Theory of Dynamical Systems. Contemp. Math., vol. 692. Providence, RI: Amer. Math. Soc., 111121.10.1090/conm/692/13905CrossRefGoogle Scholar
Guckenheimer, JM (1976) A strange, strange attractor. In The Hopf Bifurcation Theorems and Its Applications. Applied Mathematical Series, vol. 19. New York: Springer-Verlag, 368381.10.1007/978-1-4612-6374-6_25CrossRefGoogle Scholar
Guckenheimer, J and Williams, RF (1979) Structural stability of Lorenz attractors. Publ. Math. Inst. Hautes Études Sci. 50, 5972.10.1007/BF02684769CrossRefGoogle Scholar
Gutierrez, C (1987) A counter-example to a ${C}^2$ closing lemma. Ergodic Theory & Dynam. Systems 7, 509530.10.1017/S0143385700004181CrossRefGoogle Scholar
Hayashi, S (1997) Connecting invariant manifolds and the solution of the C ${}^1$ -stability and $\varOmega$ -stability conjectures for flows. Ann.of Math. 145, 81137.10.2307/2951824CrossRefGoogle Scholar
Herman, M (1991) Exemples de flots hamiltoniens dont aucune perturbation en topologie n’a d’orbites périodiques sur un ouvert de surfaces d’énergies. C. R. Acad. Sci. Paris Sér. I Math. 312, 989994.Google Scholar
Herman, M (1991) Différentiabilité optimale et contre-exemples à la fermeture en topologie des orbites récurrentes de flots hamiltoniens. C. R. Acad. Sci. Paris Sér. I Math. 313, 4951.Google Scholar
Hirayama, M (2003) Periodic probability measures are dense in the set of invariant measures. Discrete Contin. Dyn. Syst. 9, 11851192.10.3934/dcds.2003.9.1185CrossRefGoogle Scholar
Hirsch, M, Pugh, C and Shub, M (1977) Invariant Manifolds. Lecture Notes in Mathematics, vol. 583. Berlin: Springer Verlag.10.1007/BFb0092042CrossRefGoogle Scholar
Katok, A (1980) Lyapunov exponents, entropy and periodic points of diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 51, 137173.10.1007/BF02684777CrossRefGoogle Scholar
Li, M, Gan, S and Wen, L (2005) Robustly transitive singular sets via approach of extended linear Poincaré flow. Discrete Contin. Dyn. Syst. 13, 239269.10.3934/dcds.2005.13.239CrossRefGoogle Scholar
Liang, C, Liu, G and Sun, W (2009) Approximation properties on invariant measure and Oseledec splitting in non-uniformly hyperbolic systems. Trans. Amer. Math. Soc. 361, 15431579.10.1090/S0002-9947-08-04630-8CrossRefGoogle Scholar
Liao, S (1981) Obstruction sets. II. (in Chinese) Beijing Daxue Xuebao 2, 136.Google Scholar
Liao, S (1989) On $\left(\eta, d\right)$ -contractable orbits of vector fields. Systems Sci. Math. Sci 2, 193227.Google Scholar
Lorenz, EN (1963) Deterministic nonperiodic flow. J. Atmospheric Sci. 20, 130141.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Luzzatto, S, Melbourne, I and Paccaut, F (2005) The Lorenz attractor is mixing. Comm. Math. Phys. 260, 393401.10.1007/s00220-005-1411-9CrossRefGoogle Scholar
Mañé, R (1982) An ergodic closing lemma. Ann. of Math. 116, 503540.10.2307/2007021CrossRefGoogle Scholar
Mañé, R (1988) On the creation of homoclinic points. Inst. Hautes Études Sci. Publ. Math. 66, 139159.10.1007/BF02698930CrossRefGoogle Scholar
Metzger, R and Morales, CA (2008) On sectional-hyperbolic systems. Ergodic Theory & Dynam. Systems 28, 15871597.10.1017/S0143385707000995CrossRefGoogle Scholar
Morales, CA (2016) Ergodic measures for sectional-Anosov flows. New Zealand J. Math. 46, 129134.Google Scholar
Morales, CA and Pacifico, MJ (2003) A dichotomy for three-dimensional vector fields. Ergodic Theory & Dynam. Systems 23, 15751600.10.1017/S0143385702001621CrossRefGoogle Scholar
Morales, CA, Pacifico, MJ and Pujals, E (2004) Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann. of Math. 160, 158.Google Scholar
Pacifico, MJ, Yang, F and Jang, J (2021) Entropy theory for sectional hyperbolic flows. Ann. Inst. H. Poincaré C Anal. Non Linéaire 38, 10011030.10.1016/j.anihpc.2020.10.001CrossRefGoogle Scholar
Parry, W and Pollicott, M (1990) Zeta functions and the periodic orbit structure of hyperbolic dynamics. Asteŕisque 187188, 268pp.Google Scholar
Palis, J (1978) A differentiable invariant of topological conjugacies and moduli of stability. In Dynamical Systems, Vol. III–Warsaw, Astérisque, No. 51. Paris: Soc. Math. France, 335346.Google Scholar
Pugh, C (1967) The closing lemma. Amer. J. Math. 89, 9561009.10.2307/2373413CrossRefGoogle Scholar
Pugh, C and Robinson, C (1983) The ${C}^1$ -closing lemma, including Hamiltonians. Ergodic Theory & Dynam. Systems 3, 261313.10.1017/S0143385700001978CrossRefGoogle Scholar
Pesin, Y (2004) Lectures on Partial Hyperbolicity and Stable Ergodicity. Zurich Lectures in Advanced Mathematics. Zürich: European Mathematical Society (EMS).10.4171/003CrossRefGoogle Scholar
Pugh, C and Shub, M (1989) Ergodic attractors. Trans. Amer. Math. Soc. 312, 154.10.1090/S0002-9947-1989-0983869-1CrossRefGoogle Scholar
Pugh, C, Shub, M and Wilkinson, A (1997) Hölder foliations. Duke Math. J. 86, 517546.10.1215/S0012-7094-97-08616-6CrossRefGoogle Scholar
Pujals, E (2008) Some simple questions related to the ${C}^r$ stability conjecture. Nonlinearity 21, T233T237.10.1088/0951-7715/21/11/T02CrossRefGoogle Scholar
Shi, Y, Gan, S and Wen, L (2014) On the singular hyperbolicity of star flows. J. Mod. Dyn. 8, 191219.10.3934/jmd.2014.8.191CrossRefGoogle Scholar
Shilnikov, L, Shilnikov, A, Turaev, D and Chua, L (1998) Methods of Qualitative Theory in Nonlinear Dynamics. Part I. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 4. River Edge, NJ: World Scientific Publishing Co., Inc. 10.1142/9789812798596CrossRefGoogle Scholar
Sigmund, K, Generic properties of invariant measures for Axiom A diffeomorphisms. Invent. Math. 11 (1970), 99109.10.1007/BF01404606CrossRefGoogle Scholar
Sigmund, K (1972) On the space of invariant measures for hyperbolic flows. Amer. J. Math. 94, 3137.10.2307/2373591CrossRefGoogle Scholar
Sigmund, K (1977) On the connectedness of ergodic systems. Manuscripta Math. 22, 2732.10.1007/BF01182064CrossRefGoogle Scholar
Smale, S (1967) Differential dynamical systems. Bull. Amer. Math. Soc. 73, 747817.10.1090/S0002-9904-1967-11798-1CrossRefGoogle Scholar
Smale, S (1998) Mathematical problems for the next century. Math. Intelligencer 20, 715.10.1007/BF03025291CrossRefGoogle Scholar
Tucker, W (1999) The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math. 328, 11971202.10.1016/S0764-4442(99)80439-XCrossRefGoogle Scholar
Tucker, W (2002) A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2, 53117.10.1007/s002080010018CrossRefGoogle Scholar
Wen, L (1991) The ${C}^1$ closing lemma for nonsingular endomorphisms. Ergodic Theory & Dynam. Systems 11, 393412.10.1017/S0143385700006210CrossRefGoogle Scholar
Wen, L (2002) A uniform ${C}^1$ connecting lemma. Discrete Contin. Dyn. Syst 8, 257265.10.3934/dcds.2002.8.257CrossRefGoogle Scholar
Wen, L and Xia, Z (2000) ${C}^1$ connecting lemmas. Trans. Amer. Math. Soc 352, 52135230.10.1090/S0002-9947-00-02553-8CrossRefGoogle Scholar
Williams, RF (1979) The structure of Lorenz attractors. Publ. Math. Inst. Hautes Études Sci. 50, 7399.10.1007/BF02684770CrossRefGoogle Scholar
Yang, D and Zhang, J (2020) Non-hyperbolic ergodic measures and horseshoes in partially hyperbolic homoclinic classes. J. Inst. Math. Jussieu 19, 17651792.10.1017/S1474748018000579CrossRefGoogle Scholar
Yang, D and Zhang, J (2022) Ergodic optimization for some dynamical systems beyond uniform hyperbolicity. Dyn. Syst. 37, 630647.10.1080/14689367.2022.2100243CrossRefGoogle Scholar
Young, LS (1979) A closing lemma on the interval. Invent. Math. 54, 179187.10.1007/BF01408935CrossRefGoogle Scholar
Zhu, S, Gan, S and Wen, L (2008) Indices of singularities of robustly transitive sets. Discrete Contin. Dyn. Syst. 21, 945957.10.3934/dcds.2008.21.945CrossRefGoogle Scholar