Skip to main content
×
×
Home

DEMAZURE MODULES OF LEVEL TWO AND PRIME REPRESENTATIONS OF QUANTUM AFFINE  $\mathfrak{sl}_{n+1}$

  • Matheus Brito (a1), Vyjayanthi Chari (a2) and Adriano Moura (a1)
Abstract

We study the classical limit of a family of irreducible representations of the quantum affine algebra associated to $\mathfrak{sl}_{n+1}$ . After a suitable twist, the limit is a module for $\mathfrak{sl}_{n+1}[t]$ , i.e., for the maximal standard parabolic subalgebra of the affine Lie algebra. Our first result is about the family of prime representations introduced in Hernandez and Leclerc (Duke Math. J. 154 (2010), 265–341; Symmetries, Integrable Systems and Representations, Springer Proceedings in Mathematics & Statitics, Volume 40, pp. 175–193 (2013)), in the context of a monoidal categorification of cluster algebras. We show that these representations specialize (after twisting) to $\mathfrak{sl}_{n+1}[t]$ -stable prime Demazure modules in level-two integrable highest-weight representations of the classical affine Lie algebra. It was proved in Chari et al. (arXiv:1408.4090) that a stable Demazure module is isomorphic to the fusion product of stable prime Demazure modules. Our next result proves that such a fusion product is the limit of the tensor product of the corresponding irreducible prime representations of quantum affine $\mathfrak{sl}_{n+1}$ .

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      DEMAZURE MODULES OF LEVEL TWO AND PRIME REPRESENTATIONS OF QUANTUM AFFINE  $\mathfrak{sl}_{n+1}$
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      DEMAZURE MODULES OF LEVEL TWO AND PRIME REPRESENTATIONS OF QUANTUM AFFINE  $\mathfrak{sl}_{n+1}$
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      DEMAZURE MODULES OF LEVEL TWO AND PRIME REPRESENTATIONS OF QUANTUM AFFINE  $\mathfrak{sl}_{n+1}$
      Available formats
      ×
Copyright
References
Hide All
1. Bourbaki, N., Lie Groups and Lie Algebras IV–VI (Springer, Berlin, 2000).
2. Brito, M., Classification and structure of certain representations of quantum affine algebra, PhD thesis, Universidade Estadual de Campinas, Brazil (2015).
3. Carter, R., Llie Algebras of Finite and Affine Type (Cambridge University Press, Cambridge, 2005).
4. Chari, V., On the fermionic formula and the Kirillov–Reshetikhin conjecture, Int. Math. Res. Not. IMRN 12 (2001), 629654.
5. Chari, V., Braid group actions and tensor products, Int. Math. Res. Not. IMRN (2002), 357382.
6. Chari, V., Fourier, G. and Khandai, T., A categorical approach to Weyl modules, Transform. Groups 15(3) (2010), 517549.
7. Chari, V. and Loktev, S., Weyl, Demazure and fusion modules for the current algebra of sl r+1 , Adv. Math. 207 (2006), 928960.
8. Chari, V. and Moura, A., The restricted Kirillov–Reshetikhin modules for the current and twisted current algebras, Comm. Math. Phys. 266(2) (2006), 431454.
9. Chari, V., Moura, A. and Young, C., Prime representations from a homological perspective, Math. Z. 274 (2013), 613645.
10. Chari, V. and Pressley, A., Quantum affine algebras, Comm. Math. Phys. 142 (1991), 261283.
11. Chari, V. and Pressley, A., A Guide to Quantum Groups (Cambridge University Press, Cambridge, 1994).
12. Chari, V. and Pressley, A., Small representations of quantum affine algebras, Lett. Math. Phys. 30(2) (1994), 131145.
13. Chari, V. and Pressley, A., Quantum affine algebras and their representations, in Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., Volume 16, pp. 5978 (American Mathematical Society, Providence, RI, 1995).
14. Chari, V. and Pressley, A., Minimal affinizations of representations of quantum groups: the nonsimply laced case, Lett. Math. Phys. 35 (1995), 99114.
15. Chari, V. and Pressley, A., Quantum affine algebras and integrable quantum systems, in Quantum Fields and Quantum Space Time (Cargse, 1996), NATO Adv. Sci. Inst. Ser. B Phys., Volume 364, pp. 245263 (Plenum, New York, 1997).
16. Chari, V., Fourier, G. and Senesi, P., Weyl modules for the twisted loop algebras, J. Algebra 319(12) (2008), 50165038.
17. Chari, V. and Pressley, A., Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001), 191223.
18. Chari, V., Shereen, P., Venkatesh, R. and Wand, J., A Steinberg type decomposition theorem for higher level Demazure modules, Preprint, 2014, arXiv:1408.4090.
19. Chari, V. and Venkatesh, R., Demazure modules, fusion products, and Q-systems, CMP (2013).
20. Demazure, M., Une nouvelle formule de caractère, Bull. Soc. Math. 98 (1974), 163172.
21. Feigin, B. L. and Feigin, E., q-characters of the tensor products in sl2 -case, Mosc. Math. J. 2(3) (2002), 567588. math.QA/0201111.
22. Feigin, B. and Loktev, S., On generalized Kostka polynomials and the quantum verlinde rule, in Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, American Mathematical Society Transl. Ser. 2, Volume 194, pp. 6179. (1999). math.QA/9812093.
23. Fourier, G. and Littelmann, P., Tensor product structure of affine Demazure modules and limit constructions, Nagoya Math. J. 182 (2006), 171198.
24. Fourier, G. and Littelmann, P., Weyl modules, Demazure modules, KR-modules, crystals, fusion products, and limit constructions, Adv. Math. 211(2) (2007), 566593.
25. Frenkel, E. and Mukhin, E., Combinatorics of q-character of finite dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), 2357.
26. Hernandez, D., The Kirillov–Reshetikhin conjecture and solutions of T-systems, J. Reine Angew. Math. 2006 (2006), 6387.
27. Hernandez, D., On minimal affinizations of representations of quantum groups, Comm. Math. Phys. 277 (2007), 221259.
28. Hernandez, D. and Leclerc, B., Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), 265341. 10.1215/00127094-2010-040.
29. Hernandez, D. and Leclerc, B., Quantum Grothendieck rings and derived Hall algebras, Preprint, 2011, arXiv:1109.0862.
30. Hernandez, D. and Leclerc, B., Monoidal categorifications of cluster algebras of type A and D, in Symmetries, Integrable Systems and Representations, Springer Proceedings in Mathematics & Statistics, Volume 40, pp. 175193 (Springer, 2013).
31. Joseph, A., On the Demazure character formula, Ann. Sci. Éc. Norm. Supér. (4) 4 (1985), 389419.
32. Kac, V., Infinite Dimensional Lie Algebras (Cambridge University Press, Cambridge, 1983).
33. Kedem, R., A pentagon of identities, graded tensor products, and the Kirillov–Reshetikhin conjecture, in New Trends in Quantum Integrable Systems, pp. 173193 (World Science Publications, Hackensack, NJ, 2011).
34. Kumar, S., Demazure character formula in arbitrary Kac–Moody setting, Invent. Math. 89 (1987), 395423.
35. Kumar, S., Kac–Moody groups, their Flag Varieties and Representation Theory, Progress in Mathematics (Birkhäuser Verlag, Boston, 2002).
36. Lakshmibai, V., Littelmann, P. and Magyar, P., Standard monomial theory for Bott–Samelson varieties, Compos. Math. 130 (2002), 293318.
37. Lusztig, G., Introduction to Quantum Groups, Progress in Mathematics, vol. 110 (Birkhäuser Verlag, Boston, 1993).
38. Mathieu, O., Formules de caractères pour les algèbres de Kac–Moody générales, Astérisque, Invent. Math. (1988), 159160.
39. Moura, A., Restricted limits of minimal affinizations, Pacific J. Math. 244 (2010), 359397.
40. Moura, A. and Pereira, F., Graded limits of minimal affinizations and beyond: the multiplicity free case for type E 6 , Algebra Discrete Math. 12 (2011), 69115.
41. Mukhin, E. and Young, C. A. S., Path descriptions of type B q-characters, Adv. Math. 231(2) (2012), 11191150.
42. Nakajima, H., t-analogs of q-characters of Kirillov–Reshetikhin modules of quantum affine algebras, Represent. Theory 7 (2003), 259274.
43. Nakajima, H., Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), 71126.
44. Naoi, K., Weyl modules, Demazure modules and finite crystals for non-simply laced type, Adv. Math. 229(2) (2012), 875934.
45. Naoi, K., Demazure modules and graded limits of minimal affinizations, Represent. Theory 17 (2013), 524556.
46. Naoi, K., Graded limits of minimal affinizations in type D, SIGMA 10 (2014), 047, 20 pages.
47. Polo, P., Variété de Schubert et excellentes filtrations, Orbites unipotentes et représentatoins. III, Astérique (1989), 173–174, 281–311.
48. Rajan, C. S., Unique decomposition of tensor products of irreducible representations of simple algebraic groups, Ann. of Math. (2) 160(2) (2004), 683704.
49. Ravinder, B., Demazure modules, Chari–Venkatesh modules and fusion products, SIGMA 10 (2014), 110, 10 pages.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed