Skip to main content
    • Aa
    • Aa

Differential modules on p-adic polyannuli

  • Kiran S. Kedlaya (a1) and Liang Xiao (a2)

We consider variational properties of some numerical invariants, measuring convergence of local horizontal sections, associated to differential modules on polyannuli over a nonarchimedean field of characteristic 0. This extends prior work in the one-dimensional case of Christol, Dwork, Robba, Young, et al. Our results do not require positive residue characteristic; thus besides their relevance to the study of Swan conductors for isocrystals, they are germane to the formal classification of flat meromorphic connections on complex manifolds.

Hide All
3. G. Christol and B. Dwork , Modules différentielles sur les couronnes, Annales Inst. Fourier 44 (1994), 663701.

5. D. Eisenbud , Commutative algebra, Graduate Texts in Mathematics, Volume 150 (Springer, 1995).

6. A. Grothendieck , Éléments de géométrie algébrique, IV, Étude locale des schémas et des morphismes de schémas, I, Publ. Math. IHES 20 (1964).

8. K. S. Kedlaya , Swan conductors for p-adic differential modules, I, A local construction, Alg. Num. Theory 1 (2007), 269300.

14. K. S. Kedlaya and P. Tynan , Detecting integral polyhedral functions, Confluentes Math. 1 (2009), 123.

16. O. Ore , Theory of non-commutative polynomials, Annals Math. 34 (1933), 480508.

17. P. Ribenboim , The theory of classical valuations (Springer, 1999).

19. P. Schneider , Nonarchimedean functional analysis (Springer, 2002).

20. P. T. Young , Radii of convergence and index for p-adic differential operators, Trans. Am. Math. Soc. 333 (1992), 769785.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 52 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th October 2017. This data will be updated every 24 hours.