1.
Borovoĭ, M. V., The Langlands conjecture on the conjugation of Shimura varieties, Funktsional. Anal. i Prilozhen.
16(4) (1982), 61–62.
2.
Borovoĭ, M. V., Langlands’ conjecture concerning conjugation of connected Shimura varieties, Selecta Math. Soviet.
3(1) (1983/84), 3–39.
3.
Borovoĭ, M. V., The group of points of a semisimple group over a totally real closed field, in Problems in Group Theory and Homological Algebra (Russian), Matematika, pp. 142–149 (Yaroslav. Gos. Univ., Yaroslavl, 1987).
4.
Daw, C., The André–Oort conjecture via o-minimality, in O-Minimality and Diophantine Geometry, London Mathematical Society Lecture Note Series, Volume 421, pp. 129–158 (Cambridge University Press, Cambridge, 2015).
5.
Daw, C. and Ren, J., Applications of the hyperbolic Ax–Schanuel conjecture, Compos. Math.
154 (2018), 1843–1888.
6.
Deligne, P., Travaux de Shimura, in Séminaire Bourbaki, 23ème année (1970/71), Exp. No. 389, Lecture Notes in Mathematics, Volume 244, pp. 123–165 (Springer-Verlag, Berlin, 1971).
7.
Deligne, P., La conjecture de Weil pour les surfaces K3, Invent. Math.
15 (1972), 206–226.
8.
Deligne, P., Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, in Automorphic Forms, Representations and L-Functions (Part 2), Proceedings of Symposia in Pure Mathematics, Volume XXXIII, pp. 247–289 (American Mathematical Society, Providence, RI, 1979).
9.
Deligne, P., Motifs et groupe de Taniyama, in Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Mathematics, Volume 900, pp. 261–279 (Springer, Berlin, 1982).
10.
Kazhdan, D., On arithmetic varieties. II, Israel J. Math.
44(2) (1983), 139–159.
11.
Langlands, R. P., Automorphic representations, Shimura varieties, and motives. Ein Märchen, in Automorphic Forms, Representations and L-Functions (Part 2), Proceedings of Symposia in Pure Mathematics, Volume XXXIII, pp. 205–246 (American Mathematical Society, Providence, RI, 1979).
12.
Milne, J. S., The action of an automorphism of C on a Shimura variety and its special points, in Arithmetic and Geometry, Vol. I, Progress in Mathematics, Volume 35, pp. 239–265 (Birkhäuser Boston, Boston, MA, 1983).
13.
Milne, J. S., Descent for Shimura varieties, Michigan Math. J.
46(1) (1999), 203–208.
14.
Milne, J. S. and Shih, K. Y., Langlands’s construction of the Taniyama group, in Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Mathematics, Volume 900, pp. 229–260 (Springer, Berlin, 1982).
15.
Milne, J. S. and Shih, K. Y., Conjugates of Shimura varieties, in Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Mathematics, Volume 900, pp. 280–356 (Springer, Berlin, 1982).
16.
Pink, R., A combination of the conjectures of Mordell–Lang and André–Oort, in Geometric Methods in Algebra and Number Theory, Progress in Mathematics, Volume 235, pp. 251–282 (Birkhäuser Boston, Boston, MA, 2005).
17.
Ullmo, E. and Yafaev, A., Mumford–Tate and generalised Shafarevich conjectures, Ann. Math. Qué.
37(2) (2013), 255–284.
18.
Ullmo, E. and Yafaev, A., Galois orbits and equidistribution of special subvarieties: towards the André–Oort conjecture, Ann. of Math. (2)
180(3) (2014), 823–865.