Skip to main content
×
Home
    • Aa
    • Aa

HOMOGENEOUS SPACE FIBRATIONS OVER SURFACES

Abstract

By studying the theory of rational curves, we introduce a notion of rational simple connectedness for projective homogeneous spaces. As an application, we prove that over a function field of an algebraic surface over an algebraically closed field, a variety whose geometric generic fiber is a projective homogeneous space admits a rational point if and only if the elementary obstruction vanishes.

Copyright
References
Hide All
1. Artin M., Bertin J. E., Demazure M., Gabriel P., Grothendieck A., Raynaud M. and Serre J.-P., Schémas en groupes, Séminaire de Géométrie Algébrique de l’Institut des Hautes Études Scientifiques, Volume 1963/64 (Institut des Hautes Études Scientifiques, Paris, 1964).
2. Artin M., Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165189.
3. Białynicki-Birula A., Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480497.
4. Borovoi M., Colliot-Thélène J.-L. and Skorobogatov A. N., The elementary obstruction and homogeneous spaces, Duke Math. J. 141(2) (2008), 321364.
5. Behrend K., The lefschetz trace formula for the moduli stack of principal bundles. PhD thesis.
6. Berthelot P., Grothendieck A. and Illusie L. (Eds.) Théorie des intersections et théorème de Riemann–Roch, Lecture Notes in Mathematics, Volume 225 (Springer, Berlin, 1971). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre.
7. Bosch S., Lütkebohmert W. and Raynaud M., Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Volume 21 (Springer, Berlin, 1990).
8. Borel A., Linear algebraic groups, second edn, Graduate Texts in Mathematics, Volume 126 (Springer, New York, 1991).
9. Brion M., On automorphism groups of fiber bundles, Publ. Mat. Urug. 12 (2011), 3966.
10. Brion M., Which algebraic groups are Picard varieties? Sci. China Math. 58(3) (2015), 461478.
11. Carrell J. B., Torus actions and cohomology, in Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, Encyclopaedia Math. Sci., Volume 131, pp. 83158 (Springer, Berlin, 2002).
12. Colliot-Thélène J.-L., Gille P. and Parimala R., Arithmetic of linear algebraic groups over 2-dimensional geometric fields., Duke Math. J. 121(2) (2004), 285341.
13. Colliot-Thélène J.-L. and Sansuc J.-J., La descente sur les variétés rationnelles. II, Duke Math. J. 54(2) (1987), 375492.
14. Du Bois P., Complexe de de Rham filtré d’une variété singulière, Bull. Soc. Math. France 109(1) (1981), 4181.
15. de Jong A. J., He X. and Starr J. M., Families of rationally simply connected varieties over surfaces and torsors for semisimple groups, Publ. Math. Inst. Hautes Études Sci. 114 (2011), 185.
16. de Jong A. J. and Starr J., Every rationally connected variety over the function field of a curve has a rational point, Amer. J. Math. 125(3) (2003), 567580.
17. de Jong A. J. and Starr J., Low degree complete intersections are rationally simply connected. Preprint. 2006. Available at http://www.math.stonybrook.edu/∼jstarr/papers/nk1006g.pdf.
18. Fulton W. and Pandharipande R., Notes on stable maps and quantum cohomology, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., Volume 62, pp. 4596 (Amer. Math. Soc., Providence, RI, 1997).
19. Graber T., Harris J. and Starr J., Families of rationally connected varieties, J. Amer. Math. Soc. 16(1) (2003), 5767. (electronic).
20. Gille P., Serre’s conjecture II: a survey, in Quadratic forms, linear algebraic groups, and cohomology, Dev. Math., Volume 18, pp. 4156 (Springer, New York, 2010).
21. Grothendieck A., Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962] (Secrétariat mathématique, Paris, 1962).
22. Grothendieck A., Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, Volume 224 (Springer, Berlin, 1971). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud.
23. Grothendieck A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), in Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 4 (Société Mathématique de France, Paris, 2005). Séminaire de Géométrie Algébrique du Bois Marie, 1962, Augmenté d’un exposé de Michèle Raynaud. [With an exposé by Michèle Raynaud], With a preface and edited by Yves Laszlo, Revised reprint of the 1968 French original.
24. Hartshorne R., Algebraic geometry (Springer, New York, 1977). Graduate Texts in Mathematics, No. 52.
25. Harris J. and Starr J., Rational curves on hypersurfaces of low degree. II, Compos. Math. 141(1) (2005), 3592.
26. Humphreys J. E., Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, Volume 29 (Cambridge University Press, Cambridge, 1990).
27. Kempf G. R., Linear systems on homogeneous spaces, Ann. of Math. (2) 103(3) (1976), 557591.
28. Kollár J. and Kovács S. J., Log canonical singularities are Du Bois, J. Amer. Math. Soc. 23(3) (2010), 791813.
29. Knudsen F. F. and Mumford D., The projectivity of the moduli space of stable curves. I. Preliminaries on ‘det’ and ‘Div’, Math. Scand. 39(1) (1976), 1955.
30. Kollár J., Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123(1) (1986), 1142.
31. Kollár J., Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Volume 32 (Springer, Berlin, 1996).
32. Kollár J., Rationally connected varieties and fundamental groups, in Higher dimensional varieties and rational points (Budapest, 2001), Bolyai Soc. Math. Stud., Volume 12, pp. 6992 (Springer, Berlin, 2003).
33. Kim B. and Pandharipande R., The connectedness of the moduli space of maps to homogeneous spaces, in Symplectic geometry and mirror symmetry (Seoul, 2000), pp. 187201 (World Sci. Publ., River Edge, NJ, 2001).
34. Lang S., On quasi algebraic closure, Ann. of Math. (2) 55 (1952), 373390.
35. Nisnevich Y. A., Espaces homogènes principaux rationnellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind, C. R. Acad. Sci. Paris Sér. I Math. 299(1) (1984), 58.
36. Peyre E., Counting points on varieties using universal torsors, in Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., Volume 226, pp. 6181 (Birkhäuser Boston, Boston, MA, 2004).
37. Starr J. and de Jong J., Almost proper GIT-stacks and discriminant avoidance, Doc. Math. 15 (2010), 957972.
38. Skorobogatov A., Torsors and rational points, Cambridge Tracts in Mathematics, Volume 144 (Cambridge University Press, Cambridge, 2001).
39. Starr J. M., Rational points of rationally simply connected varieties, in Variétés rationnellement connexes: aspects géométriques et arithmétiques, Panor. Synthèses, Volume 31, pp. 155221 (Soc. Math. France, Paris, 2010).
40. Starr J. and Xu C., Rational points of rationally simply connected varieties over global function fields. Preprint. 2011.
41. Wittenberg O., On Albanese torsors and the elementary obstruction, Math. Ann. 340(4) (2008), 805838.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 22 *
Loading metrics...

Abstract views

Total abstract views: 99 *
Loading metrics...

* Views captured on Cambridge Core between 3rd April 2017 - 20th October 2017. This data will be updated every 24 hours.