Skip to main content Accessibility help


  • Artem Chernikov (a1) and Saharon Shelah (a2)


For an infinite cardinal ${\it\kappa}$ , let $\text{ded}\,{\it\kappa}$ denote the supremum of the number of Dedekind cuts in linear orders of size ${\it\kappa}$ . It is known that ${\it\kappa}<\text{ded}\,{\it\kappa}\leqslant 2^{{\it\kappa}}$ for all ${\it\kappa}$ and that $\text{ded}\,{\it\kappa}<2^{{\it\kappa}}$ is consistent for any ${\it\kappa}$ of uncountable cofinality. We prove however that $2^{{\it\kappa}}\leqslant \text{ded}(\text{ded}(\text{ded}(\text{ded}\,{\it\kappa})))$ always holds. Using this result we calculate the Hanf numbers for the existence of two-cardinal models with arbitrarily large gaps and for the existence of arbitrarily large models omitting a type in the class of countable dependent first-order theories. Specifically, we show that these bounds are as large as in the class of all countable theories.



Hide All
1. Baumgartner, J. E., Almost-disjoint sets, the dense set problem and the partition calculus, Ann. Math. Logic 9(4) (1976), 401439.
2. Bays, T., Some two-cardinal results for o-minimal theories, J. Symbolic Logic 63(2) (1998), 543548.
3. Berenstein, A. and Shami, Z., Invariant version of cardinality quantifiers in superstable theories, Notre Dame J. Form. Logic 47(3) (2006), 343351 (electronic).
4. Chernikov, A., Kaplan, I. and Shelah, S., On non-forking spectra, Preprint, arXiv:1205.3101v1, 2012.
5. Chernikov, A. and Simon, P., Externally definable sets and dependent pairs II, Trans. of AMS. accepted.
6. Chernikov, A. and Simon, P., Externally definable sets and dependent pairs, Israel J. Math. 194(1) (2013), 409425.
7. Gitik, M. and Shelah, S., On certain indestructibility of strong cardinals and a question of Hajnal, Arch. Math. Logic 28(1) (1989), 3542.
8. Haskell, D., Hrushovski, E. and Macpherson, D., Stable Domination and Independence in Algebraically Closed Valued Fields, Lecture Notes in Logic, Volume 30 (Association for Symbolic Logic, Chicago, IL, 2008).
9. Hodges, W., Model Theory, Encyclopedia of Mathematics and its Applications, Volume 42 (Cambridge University Press, Cambridge, 1993).
10. Hrushovski, E. and Pillay, A., On NIP and invariant measures, J. Eur. Math. Soc. (JEMS) 13(4) (2011), 10051061.
11. Hrushovski, E. and Shelah, S., Stability and omitting types, Israel J. Math. 74(2-3) (1991), 289321.
12. Holz, M., Steffens, K. and Weitz, E., Introduction to Cardinal Arithmetic, Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks], (Birkhäuser Verlag, Basel, 1999).
13. Jerome Keisler, H., Six classes of theories, J. Aust. Math. Soc. Ser. A 21(3) (1976), 257266.
14. Kaplan, I. and Shelah, S., A dependent theory with few indiscernibles, Israel J. Math. 202(1) (2014), 59103.
15. Kaplan, I. and Shelah, S., Examples in dependent theories, Preprint, arXiv:1009.5420, 2010.
16. Lachlan, A. H., A property of stable theories, Fund. Math. 77(1) (1972), 920.
17. Marker, D., Omitting types in o-minimal theories, J. Symbolic Logic 51(1) (1986), 6374.
18. Mitchell, W., Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1972/73), 2146.
19. Shelah, S., Classification Theory and the Number of Nonisomorphic Models, second edition, Studies in Logic and the Foundations of Mathematics, Volume 92 (North-Holland Publishing Co., Amsterdam, 1990).
20. Shelah, S., More on cardinal arithmetic, Arch. Math. Logic 32(6) (1993), 399428.
21. Shelah, S., Cardinal Arithmetic, Oxford Logic Guides, Volume 29 (The Clarendon Press Oxford University Press, New York, 1994). Oxford Science Publications.
22. Shelah, S., Further cardinal arithmetic, Israel J. Math. 95 (1996), 61114. doi:10.1007/BF02761035.
23. Shelah, S., Strongly dependent theories, Preprint, arXiv:math/0504197, 2005.
24. Shelah, S., Dependent theories and the generic pair conjecture, Preprint, arXiv:math/0702292, 2007.
25. Shelah, S., Dependent first order theories, continued, Israel J. Math. 173 (2009), 160.
26. Shelah, S., Dependent dreams: recounting types, Preprint, arXiv:1202.5795, 2012.
MathJax is a JavaScript display engine for mathematics. For more information see



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed