Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T22:14:30.984Z Has data issue: false hasContentIssue false

On the quasi-asymptotically locally Euclidean geometry of Nakajima's metric

Published online by Cambridge University Press:  29 June 2010

Gilles Carron
Affiliation:
Laboratoire de Mathématiques Jean Leray (UMR 6629), Université de Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France (gilles.carron@math.univ-nantes.fr)

Abstract

We show that on the Hilbert scheme of n points on ℂ2, the hyperkähler metric constructed by Nakajima via hyperkähler reduction is the quasi-asymptotically locally Euclidean (QALE) metric constructed by Joyce.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Anderson, M., L 2 harmonic forms on complete Riemannian manifolds, in Geometry and Analysis on Manifolds, Katata/Kyoto, 1987, Lecture Notes in Mathematics, No. 1339, pp. 119 (Springer, 1988).Google Scholar
2.Bando, S. and Kobayashi, R., Ricci-flat Kähler metrics on affine algebraic manifolds, II, Math. Annalen 287(1) (1990), 175180.CrossRefGoogle Scholar
3.Beauville, A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Diff. Geom. 18(4) (1983), 755782.Google Scholar
4.Bourguignon, J.-P. et al. , Premiére classe de Chern et courbure de Ricci: preuve de la conjecture de Calabi, Astérisque, Volume 58 (Société Mathématique de France, Paris, 1978).Google Scholar
5.Carron, G., Cohomologie L 2 des variétés QALE, J. Reine Angew. Math., in press.Google Scholar
6.Carron, G., L 2 harmonics forms on non-compact manifolds, preprint (arXiv:math.DG/0704.3194; 2007).Google Scholar
7.Degeratu, A. and Mazzeo, R., Fredholm results on QALE manifolds, in preparation (see Oberwolfach Rep. 4(3) (2007), 23982400).Google Scholar
8.Donaldson, S. K., Scalar curvature and projective embeddings, I, J. Diff. Geom. 59 (2001), 479522.Google Scholar
9.Gromov, M., Kähler hyperbolicity and L 2-Hodge theory, J. Diff. Geom. 33 (1991), 263292.Google Scholar
10.Ellingsrud, G. and Strømme, S. A., On a cell decomposition of the Hilbert scheme of points in the plane, Invent. Math. 91 (1988), 365370.CrossRefGoogle Scholar
11.Hausel, T., S-duality in hyperkähler Hodge theory, in The many facets of geometry: a tribute to Nigel Hitchin (ed. Garcia-Prada, O., Bourguignon, J. P. and Salamon, S.), in press (Oxford University Press).Google Scholar
12.Hausel, T., Hunsicker, E. and Mazzeo, R., Hodge cohomology of gravitational instantons, Duke Math. J. 122(3) (2004), 485548.CrossRefGoogle Scholar
13.Hitchin, N., L 2-cohomology of hyperkähler quotient, Commun. Math. Phys. 211 (2000), 153165.CrossRefGoogle Scholar
14.Hitchin, N., Karlhede, A., Lindström, U. and Rocek, M., Hyperkähler metrics and supersymmetry, Commun. Math. Phys. 108 (1987), 535589.CrossRefGoogle Scholar
15.Jost, J. and Zuo, K., Vanishing theorems for L 2-cohomology on infinite coverings of compact Kähler manifolds and applications in algebraic geometry, Commun. Analysis Geom. 8(1) (2000), 130.CrossRefGoogle Scholar
16.Joyce, D., Quasi-ALE metrics with holonomy SU(m) and Sp(m), Annals Global Analysis Geom. 19(2) (2001), 103132.CrossRefGoogle Scholar
17.Joyce, D., Compact manifolds with special holonomy, Oxford Mathematical Monographs (Oxford University Press, 2000).CrossRefGoogle Scholar
18.Kronheimer, P., The construction of ALE spaces as hyper-Kähler quotients, J. Diff. Geom. 29 (1989), 665683.Google Scholar
19.Kronheimer, P., A Torelli-type theorem for gravitational instantons, J. Diff. Geom. 29 (1989) 685697.Google Scholar
20.Lebrun, C., Complete Ricci-flat Kähler metrics on ℂn need not be flat, Proc. Symp. Pure Math. 52(2) (1991), 297304.CrossRefGoogle Scholar
21.Li, P. and Yau, S.-T., On the parabolic kernel of the Schrödinger operator, Acta Math. 156(3–4) (1986), 153201.CrossRefGoogle Scholar
22.McNeal, J., L 2 harmonic forms on some complete Kähler manifolds, Math. Annalen 323(2) (2002), 319349.CrossRefGoogle Scholar
23.Mazzeo, R., Resolution blowups, spectral convergence and quasiasymptotically conic spaces, Actes du Colloque EDP, Évian 2006.Google Scholar
24.Nakajima, H., Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras, Duke Math. J 76(2) (1994), 365416.CrossRefGoogle Scholar
25.Nakajima, H., Lectures on Hilbert schemes of points on surfaces (American Mathematical Society, Providence, RI, 1999).CrossRefGoogle Scholar
26.Nekrasov, N. and Schwarz, A., Instantons on non-commutative ℝ4, and (2, 0) superconformal six-dimensional theory, Commun. Math. Phys. 198(3) (1998), 689703.CrossRefGoogle Scholar
27.Tian, G. and Yau, S.-T., Complete Kähler manifolds with zero Ricci curvature, I, J. Am. Math. Soc. 3(3) (1990), 579609.Google Scholar
28.Tian, G. and Yau, S.-T., Complete Kähler manifolds with zero Ricci curvature, II, Invent. Math. 106(1) (1991), 2760.CrossRefGoogle Scholar
29.Vafa, C. and Witten, E., A strong coupling test of S-duality, Nuclear Phys. B 431(1–2) (1994), 377.CrossRefGoogle Scholar
30.Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Commun. Pure Appl. Math. 31(3) (1978), 339411.CrossRefGoogle Scholar