1.
Alexander, K. S., The effect of disorder on polymer depinning transitions, Comm. Math. Phys.
279 (2008), 117–146.

2.
Alexander, K. and Sidoravicius, V., Pinning of polymers and interfaces by random potentials, Ann. Appl. Probab.
16 (2006), 636–669.

3.
Alexander, K. S. and Zygouras, N., Quenched and annealed critical points in polymer pinning models, Comm. Math. Phys.
291 (2009), 659–689.

4.
Alexander, K. S. and Zygouras, N., Equality of critical points for polymer depinning transitions with loop exponent one, Ann. Appl. Probab.
20 (2010), 356–366.

5.
Alexander, K. S. and Zygouras, N., Path properties of the disordered pinning model in the delocalized regime, Ann. Appl. Probab.
24 (2014), 599–615.

6.
Berger, Q., Pinning model in random correlated environment: appearance of an infinite disorder regime, J. Stat. Phys.
155 (2014), 544–570.

7.
Berger, Q., Caravenna, F., Poisat, J., Sun, R. and Zygouras, N., The critical curve of the random pinning and copolymer models at weak coupling, Comm. Math. Phys.
326 (2014), 507–530.

8.
Berger, Q. and Lacoin, H., Sharp critical behavior for pinning models in a random correlated environment, Stochastic Process. Appl.
122 (2012), 1397–1436.

9.
Berger, Q. and Lacoin, H., The high-temperature behavior for the directed polymer in dimension 1 + 2, Ann. Inst. Henri Poincaré Probab. Stat., to appear.

10.
Berger, Q. and Toninelli, F. L., On the critical point of the random walk pinning model in dimension *d* = 3, Electron. J. Probab.
15 (2010), 654–683.

11.
Bhattacharjee, S. M. and Mukherji, S., Directed polymers with random interaction - Marginal relevance and novel criticality, Phys. Rev. Lett.
70 (1993), 49–52.

12.
Bhattacharjee, S. M. and Mukherji, S., Directed polymers with random interaction - An exactly solvable case, Phys. Rev. E
48 (1993), 3483–3496.

13.
Bingham, N. H., Goldie, C. M. and Teugels, J. L., Regular Variations (Cambridge University Press, Cambridge, 1987).

14.
Birkner, M. and Sun, R., Annealed vs quenched critical points for a random walk pinning model, Ann. Inst. Henri Poincaré Probab. Stat.
46 (2010), 414–441.

15.
Birkner, M. and Sun, R., Disorder relevance for the random walk pinning model in dimension 3, Ann. Inst. Henri Poincaré Probab. Stat.
47 (2011), 259–293.

16.
Bodineau, T., Giacomin, G., Lacoin, H. and Toninelli, F. L., Copolymers at selective interfaces: new bounds on the phase diagram, J. Stat. Phys.
132 (2008), 603–626.

17.
Caravenna, F. and den Hollander, F., A general smoothing inequality for disordered polymers, Electron. Commun. Probab.
18(76) (2013), 1–15.

18.
Caravenna, F., Sun, R. and Zygouras, N., Polynomial chaos and scaling limits of disordered systems, J. Eur. Math. Soc., to appear.

19.
Caravenna, F., Sun, R. and Zygouras, N., The continuum disordered pinning model, Probab. Theory Related Fields, to appear.

20.
Caravenna, F., Sun, R. and Zygouras, N., Universality in marginally relevant disordered systems, Preprint, arXiv:1510.06287.
21.
Caravenna, F., Toninelli, F. L. and Torri, N., Universality for the pinning model in the weak coupling regime, Preprint, arXiv:1505.04927.
22.
Cheliotis, D. and den Hollander, F., Variational characterization of the critical curve for pinning of random polymers, Ann. Probab.
41 (2013), 1767–1805.

23.
Cule, D. and Hwa, T., Denaturation of heterogeneous DNA, Phys. Rev. Lett.
79 (1997), 2375–2378.

24.
Derrida, B., Hakim, V. and Vannimenus, J., Effect of disorder on two-dimensional wetting, J. Stat. Phys.
66 (1992), 1189–1213.

25.
Derrida, B., Giacomin, G., Lacoin, H. and Toninelli, F. L., Fractional moment bounds and disorder relevance for pinning models, Comm. Math. Phys.
287 (2009), 867–887.

26.
Derrida, B. and Retaux, M., The depinning transition in presence of disorder: a toy model, J. Stat. Phys.
156 (2014), 268–290.

27.
Doney, R. A., One-sided local large deviation and renewal theorems in the case of infinite mean, Probab. Theory Related Fields
107 (1997), 451–465.

28.
Fisher, M. E., Walks, walls, wetting, and melting, J. Stat. Phys.
34 (1984), 667–729.

29.
Forgacs, G., Luck, J. M., Nieuwenhuizen, Th. M. and Orland, H., Wetting of a disordered substrate: exact critical behavior in two dimensions, Phys. Rev. Lett.
57 (1986), 2184–2187.

30.
Gangardt, D. M. and Nechaev, S. K., Wetting transition on a one-dimensional disorder, J. Stat. Phys.
130 (2008), 483–502.

31.
Giacomin, G., Random Polymer Models (Imperial College Press, World Scientific, London, 2007).

32.
Giacomin, G., Disorder and critical phenomena through basic probability models, in École d’été de probablités de Saint-Flour XL-2010, Lecture Notes in Mathematics, Volume 2025 (Springer, Heidelberg, 2011).

33.
Giacomin, G. and Lacoin, H., Pinning and disorder relevance for the discrete Gaussian free-field, Preprint, arXiv:1501.07909 [math.PR].
34.
Giacomin, G., Lacoin, H. and Toninelli, F. L., Hierarchical pinning models, quadratic maps and quenched disorder, Probab. Theory Related Fields
147 (2010), 185–216.

35.
Giacomin, G., Lacoin, H. and Toninelli, F. L., Marginal relevance of disorder for pinning models, Comm. Pure Appl. Math.
63 (2010), 233–265.

36.
Giacomin, G., Lacoin, H. and Toninelli, F. L., Disorder relevance at marginality and critical point shift, Ann. Inst. Henri Poincaré Probab. Stat.
47 (2011), 148–175.

37.
Giacomin, G. and Toninelli, F. L., Smoothing effect of quenched disorder on polymer depinning transitions, Comm. Math. Phys.
266 (2006), 1–16.

38.
Giacomin, G. and Toninelli, F. L., On the irrelevant disorder regime of pinning models, Ann. Probab.
37 (2009), 1841–1875.

39.
Harris, A. B., Effect of random defects on the critical behaviour of Ising models, J. Phys. C
7 (1974), 1671–1692.

40.
Kafri, Y. and Mukamel, D., Griffiths singularities in unbinding of strongly disordered polymers, Phys. Rev. Lett.
91 (2003), 038103.

41.
Kunz, H. and Livi, R., DNA denaturation and wetting in the presence of disorder, Eur. Phys. Lett.
99 (2012), 30001.

42.
Lacoin, H., Hierarchical pinning model with site disorder: disorder is marginally relevant, Probab. Theory Related Fields
148 (2010), 159–175.

43.
Lacoin, H., New bounds for the free energy of directed polymers in dimension 1 + 1 and 1 + 2, Comm. Math. Phys.
294 (2010), 471–503.

44.
Lacoin, H., The martingale approach to disorder irrelevance for pinning models, Electron. Commun. Probab.
15 (2010), 418–427.

45.
Lacoin, H., Non-coincidence of quenched and annealed connective constants on the supercritical planar percolation cluster, Probab. Theory Related Fields
159 (2014), 777–808.

46.
Lacoin, H., The rounding of the phase transition for disordered pinning with stretched exponential tails, Preprint, arXiv:1405.6875 [math-ph].
47.
Lacoin, H., Pinning and disorder relevance for the discrete Gaussian free-field II: the two dimensional case, Preprint, arXiv:1512.05240 [math.PR].
48.
Monthus, C., Random walks and polymers in the presence of quenched disorder, Lett. Math. Phys.
78 (2006), 207–233.

49.
Monthus, C. and Garel, T., Multifractal statistics of the local order parameter at random critical points: application to wetting transitions with disorder, Phys. Rev. E
76 (2007), 021114.

50.
Nakashima, M., A remark on the bound for the free energy of directed polymers in random environment in 1 + 2 dimension, J. Math. Phys.
55 (2014), 093304.

51.
Poisat, J., Random pinning model with finite range correlations: disorder relevant regime, Stochastic Process. Appl.
122 (2012), 3560–3579.

52.
Tang, L. H. and Chaté, H., Rare-event induced binding transition of heteropolymers, Phys. Rev. Lett.
86 (2001), 830–833.

53.
Toninelli, F. L., A replica-coupling approach to disordered pinning models, Comm. Math. Phys.
280 (2008), 389–401.

54.
Toninelli, F. L., Disordered pinning models and copolymers: beyond annealed bounds, Ann. Appl. Probab.
18 (2008), 1569–1587.

55.
Zygouras, N., Strong disorder in semidirected random polymers, Ann. Inst. Henri Poincaré Probab. Stat.
49 (2013), 753–780.

56.
Yilmaz, A. and Zeitouni, O., Differing averaged and quenched large deviations for random walks in random environments in dimensions two and three, Comm. Math. Phys.
300 (2010), 243–271.