Skip to main content
×
Home
    • Aa
    • Aa

Potential level-lowering for GSp(4)

  • Claus M. Sorensen (a1)
Abstract
Abstract

In this article, we explore a beautiful idea of Skinner and Wiles in the context of GSp(4) over a totally real field. The main result provides congruences between automorphic forms which are Iwahori-spherical at a certain place ω, and forms with a tamely ramified principal series at ω, Thus, after base change to a finite solvable totally real extension, one can often lower the level at ω. For the proof, we first establish an analogue of the Jacquet–Langlands correspondence, using the stable trace formula. The congruences are then obtained on inner forms, which are compact at infinity modulo the centre, and split at all the finite places. The crucial ingredient allowing us to do so, is an important result of Roche on types for principal series representations of split reductive groups.

Copyright
References
Hide All
1.Arthur J., The Selberg trace formula for groups of F-rank one, Annals Math. (2) 100 (1974), 326385.
2.Arthur J., On local character relations, Selecta Math. 2(4) (1996), 501579.
3.Arthur J., Towards a stable trace formula, in Proc. Int. Congress of Mathematicians, Volume 2, Berlin, 1998, Documenta Mathematica, Extra Volume II, pp. 507517 (1998).
4.Blasius D. and Rogawski J., Zeta functions of Shimura varieties, in Motives, Seattle, WA, 1991, Proceedings of Symposia in Pure Mathematics, Volume 55, Part 2, pp. 525571 (American Mathematical Society, Providence, RI, 1994).
5.Clozel L., Harris M. and Taylor R., Automorphy for some l-adic lifts of automorphic mod l representations, preprint (available at www.math.harvard.edu/~rtaylor/).
6.Gan W. T. and Takeda S., The local Langlands conjecture for GSp(4), preprint (available at www.math.ucsd.edu/~wgan/).
7.Gelbart S. and Jacquet H., Forms of GL2 from the analytic point of view, in Automorphic forms, representations and L-functions, Proceedings of Symposia in Pure Mathematics, Volume 33, Part 1, pp. 213251 (American Mathematical Society, Providence, RI, 1979).
8.Genestier A. and Tilouine J., Systemes de Taylor–Wiles pour GSp(4), in Formes automorphes, II, Le cas du group GSp(4), Astérisque, Volume 302, pp. 177290 (Société Mathématiques de France, Paris, 2005).
9.Ghitza A., Hecke eigenvalues of Siegel modular forms (mod p) and of algebraic modular forms, J. Number Theory 106(2) (2004), 345384.
10.Gross B., Algebraic modular forms, Israel J. Math. 113(1999), 6193.
11.Hales T., Shalika germs on GSp4, Orbites unipotentes et representations, II, Astérisque 171172(1989), 195256.
12.Hales T., The fundamental lemma for Sp(4), Proc. Am. Math. Soc. 125(1) (1997), 301308.
13.Harris M., Introduction to The stable trace formula, Shimura varieties, and arithmetic applications, Volume 1 (available at www.math.jussieu.fr/~harris/), forthcoming.
14.Helm D., Mazur's principle for U(2,1) Shimura varieties, preprint (available at www.math.harvard.edu/~dhelm/).
15.Ihara Y., On modular curves over finite fields, in Discrete Subgroups of Lie Groups and Applications to Moduli, International Colloquium, Bombay, 1973, pp. 161202 (Oxford University Press, 1975).
16.Keys D., On the decomposition of reducible principal series representations of p-adic Chevalley groups, Pac. J. Math. 101(2) (1982), 351388.
17.Kottwitz R., Stable trace formula: elliptic singular terms, Math. Annalen 275(3) (1986), 365399.
18.Labesse J.-P., Cohomologie, stabilisation et changement de base (with two appendices: Appendix A by L. Clozel and J.-P. Labesse; Appendix B by L. Breen), Astérisque, Volume 257 (Société Mathématiques de France, Paris, 1999).
19.Langlands R., On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, Volume 544 (Springer, 1976).
20.Langlands R., Les debuts d'une formule des traces stable, Publications Mathématiques de l'Université Paris VII, Volume 13 (Universite de Paris VII, UER de Mathématiques, Paris, 1983).
21.Langlands R., On the classification of irreducible representations of real algebraic groups, in Representation theory and harmonic analysis on semisimple Lie groups, Mathematical Surveys and Monographs, Volume 31, pp. 101170 (American Mathematical Society, Providence, RI, 1989).
22.Langlands R. and Shelstad D., Descent for transfer factors, in The Grothendieck Festschrift, Volume II, pp. 485563, Progress in Mathematics, Volume 87 (Birkhäuser, Boston, MA, 1990).
23.Piatetski-Shapiro I., On the Saito–Kurokawa lifting, Invent. Math. 71(2) (1983), 309338.
24.Platonov V. and Rapinchuk A., Algebraic groups and number theory (translated from the 1991 Russian original by Rowen R.), Pure and Applied Mathematics, Volume 139 (Academic Press, 1994).
25.Ramakrishnan D., Pure motives and automorphic forms, in Motives, Seattle, WA, 1991, Proceedings of Symposia in Pure Mathematics, Volume 55, Part 2, pp. 411446 (American Mathematical Society, Providence, RI, 1994).
26.Ribet K., Congruence relations between modular forms, in Proc. Int. Congress of Mathematicians, Volume 1, Warsaw, 1983, pp. 503514 (PWN, Warsaw, 1984).
27.Ribet K., Report on mod l representations of Gal(inline-graphic
$\bar{\mathbb{Q}}$
/ℚ), in Motives, Seattle, WA, 1991, Proceedings of Symposia in Pure Mathematics, Volume 55, Part 2, pp. 639676 (American Mathematical Society, Providence, RI, 1994).
28.Roberts B., The non-Archimedean theta correspondence for GSp(2) and GO(4), Trans. Am. Math. Soc. 351(2) (1999), 781811.
29.Roche A., Types and Hecke algebras for principal series representations of split reductive p-adic groups, Annales Scient. Éc. Norm. Sup. 31(3) (1998), 361413.
30.Shelstad D., Characters and inner forms of a quasi-split group over ℝ, Compositio Math. 39(1) (1979), 1145.
31.Shelstad D., L-indistinguishability for real groups, Math. Annalen 259(3) (1982), 385430.
32.Skinner C. and Wiles A., Base change and a problem of Serre, Duke Math. J. 107(1) (2001), 1525.
33.Sorensen C., Level-raising for Saito–Kurokawa forms, in preparation.
34.Soudry D., The CAP representations of GSp(4,inline-graphic
$\mathbb{A}$
)
, J. Reine Angew. Math. 383 (1988), 87108.
35.Tadic M., Representations of p-adic symplectic groups, Compositio Math. 90(2) (1994), 123181.
36.Taylor R., Automorphy for some l-adic lifts of automorphic mod l representations, II, preprint (available at www.math.harvard.edu/~rtaylor/).
37.Waldspurger J.-L., Le lemme fondamental implique le transfert, Compositio Math. 105(2) (1997), 153236.
38.Weissauer R., Four dimensional Galois representations, in Formes automorphes, II, Le cas du group GSp(4), Astérisque, Volume 302, pp. 67150 (Société Mathématiques de France, Paris, 2005).
39.Weissauer R., Character identities and Galois representations related to the group GSp(4), preprint (available at www.mathi.uni-heidelberg.de/~weissaue/papers.html).
40.Weissauer R., Endoscopy for GSp(4), preprint (available at www.mathi.uni-heidelberg.de/~weissaue/papers.html).
41.Wiles A., Modular elliptic curves and Fermat's last theorem, Annals Math. 141(3) (1995), 443551.
42.Winarsky N., Reducibility of principal series representations of p-adic Chevalley groups, Am. J. Math. 100(5) (1978), 941956.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 31 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.