Published online by Cambridge University Press: 01 September 2025
The notion of strong 1-boundedness for finite von Neumann algebras was introduced in [Jun07b]. This framework provided a free probabilistic approach to study rigidity properties and classification of finite von Neumann algebras. In this paper, we prove that tracial von Neumann algebras with a finite Kazhdan set are strongly 1-bounded. This includes all property (T) von Neumann algebras with finite-dimensional center and group von Neumann algebras of property (T) groups. This result generalizes all the previous results in this direction due to Voiculescu, Ge, Ge-Shen, Connes-Shlyakhtenko, Jung-Shlyakhtenko, Jung and Shlyakhtenko. Our proofs are based on analysis of covering estimates of microstate spaces using an iteration technique in the spirit of Jung.
B. Hayes gratefully acknowledges support from the NSF grant DMS-2000105. D. Jekel was supported by NSF grant DMS-2002826
 ${C}^{\ast }$
-Algebras and Finite-Dimensional Approximations, Graduate Studies in Mathematics, vol. 88. Providence: American Mathematical Society.10.1090/gsm/088CrossRefGoogle Scholar
${C}^{\ast }$
-Algebras and Finite-Dimensional Approximations, Graduate Studies in Mathematics, vol. 88. Providence: American Mathematical Society.10.1090/gsm/088CrossRefGoogle Scholar $\mathrm{I}{\mathrm{I}}_1$
factors with trivial fundamental group. American Jounral of Math. 146 (2024), no. 2, 435–465.Google Scholar
$\mathrm{I}{\mathrm{I}}_1$
factors with trivial fundamental group. American Jounral of Math. 146 (2024), no. 2, 435–465.Google Scholar $\mathrm{T}$
for von Neumann algebras. Bull. London Math. Soc. 17(1), 57–62. MR 76645010.1112/blms/17.1.57CrossRefGoogle Scholar
$\mathrm{T}$
for von Neumann algebras. Bull. London Math. Soc. 17(1), 57–62. MR 76645010.1112/blms/17.1.57CrossRefGoogle Scholar $\mathrm{I}{\mathrm{I}}_1,$
$\mathrm{I}{\mathrm{I}}_1,$
 
 $\mathrm{I}{\mathrm{I}}_{\infty },$
$\mathrm{I}{\mathrm{I}}_{\infty },$
 
 $\mathrm{II}{\mathrm{I}}_{\lambda},$
$\mathrm{II}{\mathrm{I}}_{\lambda},$
 
 $\lambda \ne 1$
. Ann. of Math. (2) 104(1), 73–115. MR 045465910.2307/1971057CrossRefGoogle Scholar
$\lambda \ne 1$
. Ann. of Math. (2) 104(1), 73–115. MR 045465910.2307/1971057CrossRefGoogle Scholar $\mathrm{I}{\mathrm{I}}_1$
 with countable fundamental group. J. Operator Theory 4(1), 151–153. MR 587372Google Scholar
$\mathrm{I}{\mathrm{I}}_1$
 with countable fundamental group. J. Operator Theory 4(1), 151–153. MR 587372Google Scholar ${L}^2$
-homology for von Neumann algebras. J. Reine Angew. Math. 586, 125–168. MR 218060310.1515/crll.2005.2005.586.125CrossRefGoogle Scholar
${L}^2$
-homology for von Neumann algebras. J. Reine Angew. Math. 586, 125–168. MR 218060310.1515/crll.2005.2005.586.125CrossRefGoogle Scholar $1$
-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels continus de representations. Bull. Soc. Math. France 105(3), 281–336. MR 57889310.24033/bsmf.1853CrossRefGoogle Scholar
$1$
-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels continus de representations. Bull. Soc. Math. France 105(3), 281–336. MR 57889310.24033/bsmf.1853CrossRefGoogle Scholar ${\mathrm{l}}^2$
-cohomology, Anal. PDE.Google Scholar
${\mathrm{l}}^2$
-cohomology, Anal. PDE.Google Scholar ${L}^2$
-invariants. The sofic property. Math. Ann. 332(2), 421–441. MR 217806910.1007/s00208-005-0640-8CrossRefGoogle Scholar
${L}^2$
-invariants. The sofic property. Math. Ann. 332(2), 421–441. MR 217806910.1007/s00208-005-0640-8CrossRefGoogle Scholar ${l}^2$
 de relations d’équivalence et de groups. Publ. Math. Inst. Hautes Études Sci. (95), 93–150. MR 195319110.1007/s102400200002CrossRefGoogle Scholar
${l}^2$
 de relations d’équivalence et de groups. Publ. Math. Inst. Hautes Études Sci. (95), 93–150. MR 195319110.1007/s102400200002CrossRefGoogle Scholar $\mathrm{I}{\mathrm{I}}_1$
 factors with an exotic MASA. Int. Math. Res. Not. IMRN (6), 1352–1380. MR 2806507Google Scholar
$\mathrm{I}{\mathrm{I}}_1$
 factors with an exotic MASA. Int. Math. Res. Not. IMRN (6), 1352–1380. MR 2806507Google Scholar ${W}^{\ast }$
-superrigidity for Bernoulli actions of property (T) groups. J. Amer. Math. Soc. 24(4), 1175–1226. MR 281334110.1090/S0894-0347-2011-00706-6CrossRefGoogle Scholar
${W}^{\ast }$
-superrigidity for Bernoulli actions of property (T) groups. J. Amer. Math. Soc. 24(4), 1175–1226. MR 281334110.1090/S0894-0347-2011-00706-6CrossRefGoogle Scholar $\le 1$
. J. Noncommut. Geom. 1(2), 271–279. MR 230830710.4171/jncg/7CrossRefGoogle Scholar
$\le 1$
. J. Noncommut. Geom. 1(2), 271–279. MR 230830710.4171/jncg/7CrossRefGoogle Scholar ${L}^2$
-invariants in free entropy: Global upper bounds. Preprint, 2016, arXiv:1602.04726.Google Scholar
${L}^2$
-invariants in free entropy: Global upper bounds. Preprint, 2016, arXiv:1602.04726.Google Scholar ${\mathcal{R}}^{\omega }$
. Math. Ann. 338(1), 241–248. MR 229551110.1007/s00208-006-0074-yCrossRefGoogle Scholar
${\mathcal{R}}^{\omega }$
. Math. Ann. 338(1), 241–248. MR 229551110.1007/s00208-006-0074-yCrossRefGoogle Scholar $1$
-bounded von Neumann algebras. Geom. Funct. Anal. 17(4), 1180–1200. MR 237301410.1007/s00039-007-0624-9CrossRefGoogle Scholar
$1$
-bounded von Neumann algebras. Geom. Funct. Anal. 17(4), 1180–1200. MR 237301410.1007/s00039-007-0624-9CrossRefGoogle Scholar $\mathrm{I}{\mathrm{I}}_1$
 factors with at most one Cartan subalgebra. Ann. of Math. (2) 172(1), 713–749. MR 268043010.4007/annals.2010.172.713CrossRefGoogle Scholar
$\mathrm{I}{\mathrm{I}}_1$
 factors with at most one Cartan subalgebra. Ann. of Math. (2) 172(1), 713–749. MR 268043010.4007/annals.2010.172.713CrossRefGoogle Scholar $\mathrm{I}{\mathrm{I}}_1$
 factors with at most one Cartan subalgebra, II. Amer. J. Math. 132(3), 841–866. MR 266690910.1353/ajm.0.0121CrossRefGoogle Scholar
$\mathrm{I}{\mathrm{I}}_1$
 factors with at most one Cartan subalgebra, II. Amer. J. Math. 132(3), 841–866. MR 266690910.1353/ajm.0.0121CrossRefGoogle Scholar $\mathrm{I}{\mathrm{I}}_1$
-factor. Proc. Amer. Math. Soc. 132(2), 487–490. MR 202237310.1090/S0002-9939-03-07127-2CrossRefGoogle Scholar
$\mathrm{I}{\mathrm{I}}_1$
-factor. Proc. Amer. Math. Soc. 132(2), 487–490. MR 202237310.1090/S0002-9939-03-07127-2CrossRefGoogle Scholar $1$
-cohomology characterization of property (t) in von neumann algebras. Pacific Journal of Math. 243(1), 181–199.10.2140/pjm.2009.243.181CrossRefGoogle Scholar
$1$
-cohomology characterization of property (t) in von neumann algebras. Pacific Journal of Math. 243(1), 181–199.10.2140/pjm.2009.243.181CrossRefGoogle Scholar ${L}^2$
-rigidity in von Neumann algebras. Invent. Math. 175(2), 417–433. MR 247011110.1007/s00222-008-0154-6CrossRefGoogle Scholar
${L}^2$
-rigidity in von Neumann algebras. Invent. Math. 175(2), 417–433. MR 247011110.1007/s00222-008-0154-6CrossRefGoogle Scholar $\mathrm{I}{\mathrm{I}}_1$
 factors. Proc. Natl. Acad. Sci. USA 101(3), 723–726. MR 202917710.1073/pnas.2333960100CrossRefGoogle Scholar
$\mathrm{I}{\mathrm{I}}_1$
 factors. Proc. Natl. Acad. Sci. USA 101(3), 723–726. MR 202917710.1073/pnas.2333960100CrossRefGoogle Scholar $\mathrm{I}{\mathrm{I}}_1$
 factors with Betti numbers invariants. Ann. of Math. (2) 163(3), 809–899. MR 221513510.4007/annals.2006.163.809CrossRefGoogle Scholar
$\mathrm{I}{\mathrm{I}}_1$
 factors with Betti numbers invariants. Ann. of Math. (2) 163(3), 809–899. MR 221513510.4007/annals.2006.163.809CrossRefGoogle Scholar $\mathrm{II}_1$
 factors arising from malleable actions of
$\mathrm{II}_1$
 factors arising from malleable actions of 
 $w$
-rigid groups. I. Invent. Math. 165(2), 369–408. MR 223196110.1007/s00222-006-0501-4CrossRefGoogle Scholar
$w$
-rigid groups. I. Invent. Math. 165(2), 369–408. MR 223196110.1007/s00222-006-0501-4CrossRefGoogle Scholar $I{I}_1$
 factors arising from malleable actions of
$I{I}_1$
 factors arising from malleable actions of 
 $w$
-rigid groups. II. Invent. Math. 165(2), 409–451. MR 223196210.1007/s00222-006-0502-3CrossRefGoogle Scholar
$w$
-rigid groups. II. Invent. Math. 165(2), 409–451. MR 223196210.1007/s00222-006-0502-3CrossRefGoogle Scholar $w$
-rigid groups. Invent. Math. 170(2), 243–295. MR 234263710.1007/s00222-007-0063-0CrossRefGoogle Scholar
$w$
-rigid groups. Invent. Math. 170(2), 243–295. MR 234263710.1007/s00222-007-0063-0CrossRefGoogle Scholar $\mathrm{I}{\mathrm{I}}_1$
 factors. J. Funct. Anal. 266(9), 5818–5846. MR 318296110.1016/j.jfa.2014.02.004CrossRefGoogle Scholar
$\mathrm{I}{\mathrm{I}}_1$
 factors. J. Funct. Anal. 266(9), 5818–5846. MR 318296110.1016/j.jfa.2014.02.004CrossRefGoogle Scholar $\mathrm{I}{\mathrm{I}}_1$
 factors arising from arbitrary actions of free groups. Acta Math. 212 (1), 141–198. MR 317960910.1007/s11511-014-0110-9CrossRefGoogle Scholar
$\mathrm{I}{\mathrm{I}}_1$
 factors arising from arbitrary actions of free groups. Acta Math. 212 (1), 141–198. MR 317960910.1007/s11511-014-0110-9CrossRefGoogle Scholar $I{I}_1$
 factors arising from arbitrary actions of hyperbolic groups. J. Reine Angew. Math. 694, 215–239. MR 325904410.1515/crelle-2012-0104CrossRefGoogle Scholar
$I{I}_1$
 factors arising from arbitrary actions of hyperbolic groups. J. Reine Angew. Math. 694, 215–239. MR 325904410.1515/crelle-2012-0104CrossRefGoogle Scholar $2$
-sphere. Israel J. Math. 37(3), 193–208. MR 59945410.1007/BF02760961CrossRefGoogle Scholar
$2$
-sphere. Israel J. Math. 37(3), 193–208. MR 59945410.1007/BF02760961CrossRefGoogle Scholar $T$
, strong ergodicity and invariant means for ergodic group-actions. Ergodic Theory Dynamical Systems 1(2), 223–236. MR 661821Google Scholar
$T$
, strong ergodicity and invariant means for ergodic group-actions. Ergodic Theory Dynamical Systems 1(2), 223–236. MR 661821Google Scholar ${\beta}_1^{(2)}=0$
 are strongly 1-bounded. J. Operator Theory 85 (1), 217–228.10.7900/jot.2019oct21.2270CrossRefGoogle Scholar
${\beta}_1^{(2)}=0$
 are strongly 1-bounded. J. Operator Theory 85 (1), 217–228.10.7900/jot.2019oct21.2270CrossRefGoogle Scholar $\le 1$
 for some generators of property
$\le 1$
 for some generators of property 
 $\mathrm{T}$
 factors of type
$\mathrm{T}$
 factors of type 
 $I{I}_1$
 J. Reine Angew. Math. 514, 113–118. MR 171128310.1515/crll.1999.067CrossRefGoogle Scholar
$I{I}_1$
 J. Reine Angew. Math. 514, 113–118. MR 171128310.1515/crll.1999.067CrossRefGoogle Scholar