Skip to main content Accessibility help


  • Bruno Martin (a1), Christian Mauduit (a2) and Joël Rivat (a3)


Let $b$ be an integer larger than 1. We give an asymptotic formula for the exponential sum

$$\begin{eqnarray}\mathop{\sum }_{\substack{ p\leqslant x \\ g(p)=k}}\exp \big(2\text{i}\unicode[STIX]{x1D70B}\unicode[STIX]{x1D6FD}p\big),\end{eqnarray}$$
where the summation runs over prime numbers $p$ and where $\unicode[STIX]{x1D6FD}\in \mathbb{R}$ , $k\in \mathbb{Z}$ , and $g:\mathbb{N}\rightarrow \mathbb{Z}$ is a strongly $b$ -additive function such that $\operatorname{pgcd}(g(1),\ldots ,g(b-1))=1$ .

Soit $b$ un nombre entier supérieur ou égal à 2. Nous donnons une formule asymptotique pour la somme d’exponentielles

$$\begin{eqnarray}\mathop{\sum }_{\substack{ p\leqslant x \\ g(p)=k}}\exp \big(2\text{i}\unicode[STIX]{x1D70B}\unicode[STIX]{x1D6FD}p\big),\end{eqnarray}$$
où la sommation est effectuée sur les nombres premiers $p$ , et où $\unicode[STIX]{x1D6FD}$ est un nombre réel, $k$ un nombre entier et $g:\mathbb{N}\rightarrow \mathbb{Z}$ une fonction fortement $b$ -additive telle que $\operatorname{pgcd}(g(1),\ldots ,g(b-1))=1$ .



Hide All

Ce travail a bénéficié des aides de l’Agence nationale de la recherche portant les références « ANR-14-CE34-0009 » MUDERA, de Ciência sem Fronteiras, projet PVE 407308/2013-0, et du projet d’échange DynEurBraz (FP7 Irses 230844).



Hide All
1. Bassily, N. L. et Kátai, I., Distribution of the values of q-additive functions on polynomial sequences, Acta Math. Hungar. 68(4) (1995), 353361.
2. Billingsley, P., Probability and measure, éd. third, Wiley Series in Probability and Mathematical Statistics, (John Wiley & Sons, Inc., New York, 1995). A Wiley-Interscience Publication.
3. Bourgain, J., Prescribing the binary digits of primes, Israel J. Math. 194(2) (2013), 935955.
4. Bourgain, J., Prescribing the binary digits of primes, II, Israel J. Math. 206(1) (2015), 165182.
5. Drmota, M. et Grabner, P. J., Analysis of digital functions and applications, in Combinatorics, automata and number theory, Encyclopedia of Mathematics and its Applications, Volume 135, pp. 452504 (Cambridge University Press, Cambridge, 2010).
6. Drmota, M. et Mauduit, C., Weyl sums over integers with affine digit restrictions, J. Number Theory 130(11) (2010), 24042427.
7. Drmota, M., Mauduit, C. et Rivat, J., Primes with an Average Sum of Digits, Compositio 145(2) (2009), 271292.
8. Fouvry, E. et Mauduit, C., Sur les entiers dont la somme des chiffres est moyenne, J. Number Theory 114(1) (2005), 135152.
9. Harman, G., Primes with preassigned digits, Acta Arith. 125(2) (2006), 179185.
10. Harman, G. et Kátai, I., Primes with preassigned digits. II, Acta Arith. 133(2) (2008), 171184.
11. Iwaniec, H. et Kowalski, E., Analytic number theory, American Mathematical Society Colloquium Publications, Volume 53 (American Mathematical Society, Providence, RI, 2004).
12. Kàtai, I., On the sum of digits of primes, Acta Math. Acad. Sci. Hungar. 30(1–2) (1977), 169173.
13. Kàtai, I., Distribution of digits of primes in q-ary canonical form, Acta Math. Hungar. 47(3–4) (1986), 341359.
14. Kuipers, L. et Niederreiter, H., Uniform distribution of sequences, Pure and Applied Mathematics (Wiley-Interscience John Wiley & Sons, New York, 1974), 390 pp.
15. Martin, B., Mauduit, C. et Rivat, J., Théorème des nombres premiers pour les fonctions digitales, Acta Arith. 165(1) (2014), 1145.
16. Martin, B., Mauduit, C. et Rivat, J., Fonctions digitales le long des nombres premiers, Acta Arith. 170(2) (2015), 175197.
17. Mauduit, C., Propriétés arithmétiques des substitutions et automates infinis, Ann. Inst. Fourier (Grenoble) 56(7) (2006), 25252549.
18. Mauduit, C. et Rivat, J., Sur un problème de Gelfond : la somme des chiffres des nombres premiers, Ann. of Math. (2) 171(3) (2010), 15911646.
19. Mauduit, C. et Sárközy, A., On the arithmetic structure of the integers whose sum of digits is fixed, Acta Arith. 81 (1997), 145173.
20. Pólya, G. et Szegö, G., Problems and theorems in analysis. I, Classics in Mathematics (Springer, Berlin, 1998). Series, integral calculus, theory of functions, Translated from the German by Dorothee Aeppli, Reprint of the 1978 English translation.
21. Vinogradov, I., The method of trigonometrical sums in the theory of numbers, Tr. Mat. Inst. Steklova 23(1947) (1947), 110 pp.
22. Vinogradov, I., The method of Trigonometrical Sums in the Theory of Numbers, translated from the Russian, revised and annotated by K. F. Roth and A. Davenport (Interscience, London, 1954).
23. Wolke, D., Primes with preassigned digits, Acta Arith. 119(2) (2005), 201209.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed