Published online by Cambridge University Press: 13 June 2014
The aim of this paper is to show that rigid syntomic cohomology – defined by Besser – is representable by a rational ring spectrum in the motivic homotopical sense. In fact, extending previous constructions, we exhibit a simple representability criterion and we apply it to several cohomologies in order to get our central result. This theorem gives new results for rigid syntomic cohomology such as h-descent and the compatibility of cycle classes with Gysin morphisms. Along the way, we prove that motivic ring spectra induce a complete Bloch–Ogus cohomological formalism and even more. Finally, following a general motivic homotopical philosophy, we exhibit a natural notion of rigid syntomic coefficients.
 $K$-theory and motivic cohomology of schemes, I, http://wwwuni-duede/%7Ebm0032/publ/KthyMotI1201pdf, 2004.Google Scholar
$K$-theory and motivic cohomology of schemes, I, http://wwwuni-duede/%7Ebm0032/publ/KthyMotI1201pdf, 2004.Google Scholar