Skip to main content Accessibility help
×
Home

RIGIDITY FOR RIGID ANALYTIC MOTIVES

  • Federico Bambozzi (a1) and Alberto Vezzani (a2)

Abstract

In this paper we prove the Rigidity Theorem for motives of rigid analytic varieties over a non-Archimedean valued field $K$ . We prove this theorem both for motives with transfers and without transfers in a relative setting. Applications include the construction of étale realization functors, an upgrade of the known comparison between motives with and without transfers and an upgrade of the rigid analytic motivic tilting equivalence, extending them to $\mathbb{Z}[1/p]$ -coefficients.

Copyright

Footnotes

Hide All

The first author acknowledges the University of Regensburg with the support of the DFG funded CRC 1085 ‘Higher Invariants. Interactions between Arithmetic Geometry and Global Analysis’. The second author was partially supported by the ANR Grant PERCOLATOR: ANR-14-CE25-0002-01 and by the ANR JCJC Grant PERGAMO: ANR-18-CE40-0017.

Footnotes

References

Hide All
1. Adiprasito, K., Liu, G., Pak, I. and Temkin, M., Log smoothness and polystability over valuation rings, preprint, 2018, arXiv:1806.09168 [math.AG].
2. Ayoub, J., Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, I, Astérisque 314 (2008), x+466 pp, 2007.
3. Ayoub, J., Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, II, Astérisque 315 (2008), vi+364 pp, 2007.
4. Ayoub, J., La réalisation étale et les opérations de Grothendieck, Ann. Sci. Éc. Norm. Supér. (4) 47(1) (2014), 1145.
5. Ayoub, J., Note sur les opérations de Grothendieck et la réalisation de Betti, J. Inst. Math. Jussieu 9(2) (2010), 225263.
6. Ayoub, J., Motifs des variétés analytiques rigides, Mém. Soc. Math. Fr. (N.S.) 140–141 (2015), vi+386 pp.
7. Berkovich, V. G., Smooth p-adic analytic spaces are locally contractible, Invent. Math. 137(1) (1999), 184.
8. Bhatt, B. and Scholze, P., The pro-étale topology for schemes, Astérisque 369 (2015), 99201.
9. Binda, F. and Krishna, A., Rigidity for relative $0$ -cycles, preprint, 2018, arXiv:1802.00165 [math.AG].
10. Bosch, S., Güntzer, U. and Remmert, R., A systematic approach to rigid analytic geometry, in Non-Archimedean Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Volume 261 (Springer-Verlag, Berlin, 1984).
11. Choudhury, U. and de Souza, M. G. A., Homotopy theory of dg sheaves, Comm. Algebra 47(8) (2019), 32023228.
12. Cisinski, D.-C. and Déglise, F., Étale motives, Compos. Math. 152(3) (2016), 556666.
13. Dugger, D., Universal homotopy theories, Adv. Math. 164(1) (2001), 144176.
14. Fresnel, J. and van der Put, M., Rigid Analytic Geometry and its Applications, Progress in Mathematics, Volume 218 (Birkhäuser Boston, Inc., Boston, MA, 2004).
15. Gabber, O., K-theory of Henselian local rings and Henselian pairs, in Algebraic K-theory, Commutative Algebra, and Algebraic Geometry (Santa Margherita Ligure, 1989), Contemporary Mathematics, Volume 126, pp. 5970 (American Mathematical Society, Providence, RI, 1992).
16. Grothendieck, A., Éléments de géométrie algébrique IV. Étude locale des schémas et des morphismes de schémas, Publ. Math. Inst. Hautes Études Sci. 32 (1967), 361.
17. Hovey, M., Model Categories, Mathematical Surveys and Monographs, Volume 63 (American Mathematical Society, Providence, RI, 1999).
18. Hovey, M., Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra 165(1) (2001), 63127.
19. Huber, R., Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Aspects of Mathematics, Volume E30 (Friedr. Vieweg & Sohn, Braunschweig, 1996).
20. Mazza, C., Voevodsky, V. and Weibel, C., Lecture Notes on Motivic Cohomology, Clay Mathematics Monographs, Volume 2 (American Mathematical Society, Providence, RI, 2006).
21. Scholze, P., Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245313.
22. Scholze, P., p-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi 1(e1) (2013), 77.
23. Scholze, P., Etale cohomology of diamonds, preprint, 2017, arXiv:1709.07343 [math.AG].
24. Suslin, A., On the K-theory of algebraically closed fields, Invent. Math. 73(2) (1983), 241245.
25. Suslin, A., On the $K$ -theory of local fields, in Proceedings of the Luminy Conference on Algebraic $K$ -theory (Luminy, 1983), J. Pure Appl. Algebra 34(2–3) (1984), 301–318.
26. Vezzani, A., Effective motives with and without transfers in characteristic p , Adv. Math. 306 (2017), 852879.
27. Vezzani, A., The Monsky–Washnitzer and the overconvergent realizations, Int. Math. Res. Not. IMRN 11 (2018), 34433489.
28. Vezzani, A., Rigid cohomology via the tilting equivalence, J. Pure Appl. Algebra 223(2) (2019), 818843.
29. Vezzani, A., A motivic version of the theorem of Fontaine and Wintenberger, Compos. Math. 155(1) (2019), 3888.
30. Vezzani, A., The Berkovich realization for rigid analytic motives, J. Algebra 527 (2019), 3054.
31. Voevodsky, V., Suslin, A. and Friedlander, E. M., Cycles, Transfers, and Motivic Homology Theories, Annals of Mathematics Studies, Volume 143 (Princeton University Press, Princeton, NJ, 2000).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

RIGIDITY FOR RIGID ANALYTIC MOTIVES

  • Federico Bambozzi (a1) and Alberto Vezzani (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed