1.
Adiprasito, K., Liu, G., Pak, I. and Temkin, M., Log smoothness and polystability over valuation rings, preprint, 2018, arXiv:1806.09168 [math.AG]. 2.
Ayoub, J., Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, I, Astérisque
314 (2008), x+466 pp, 2007.
3.
Ayoub, J., Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, II, Astérisque
315 (2008), vi+364 pp, 2007.
4.
Ayoub, J., La réalisation étale et les opérations de Grothendieck, Ann. Sci. Éc. Norm. Supér. (4)
47(1) (2014), 1–145.
5.
Ayoub, J., Note sur les opérations de Grothendieck et la réalisation de Betti, J. Inst. Math. Jussieu
9(2) (2010), 225–263.
6.
Ayoub, J., Motifs des variétés analytiques rigides, Mém. Soc. Math. Fr. (N.S.)
140–141 (2015), vi+386 pp.
7.
Berkovich, V. G., Smooth p-adic analytic spaces are locally contractible, Invent. Math.
137(1) (1999), 1–84.
8.
Bhatt, B. and Scholze, P., The pro-étale topology for schemes, Astérisque
369 (2015), 99–201.
9.
Binda, F. and Krishna, A., Rigidity for relative
$0$
-cycles, preprint, 2018, arXiv:1802.00165 [math.AG]. 10.
Bosch, S., Güntzer, U. and Remmert, R., A systematic approach to rigid analytic geometry, in Non-Archimedean Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Volume 261 (Springer-Verlag, Berlin, 1984).
11.
Choudhury, U. and de Souza, M. G. A., Homotopy theory of dg sheaves, Comm. Algebra
47(8) (2019), 3202–3228.
12.
Cisinski, D.-C. and Déglise, F., Étale motives, Compos. Math.
152(3) (2016), 556–666.
13.
Dugger, D., Universal homotopy theories, Adv. Math.
164(1) (2001), 144–176.
14.
Fresnel, J. and van der Put, M., Rigid Analytic Geometry and its Applications, Progress in Mathematics, Volume 218 (Birkhäuser Boston, Inc., Boston, MA, 2004).
15.
Gabber, O.,
K-theory of Henselian local rings and Henselian pairs, in Algebraic K-theory, Commutative Algebra, and Algebraic Geometry (Santa Margherita Ligure, 1989), Contemporary Mathematics, Volume 126, pp. 59–70 (American Mathematical Society, Providence, RI, 1992).
16.
Grothendieck, A., Éléments de géométrie algébrique IV. Étude locale des schémas et des morphismes de schémas, Publ. Math. Inst. Hautes Études Sci.
32 (1967), 361.
17.
Hovey, M., Model Categories, Mathematical Surveys and Monographs, Volume 63 (American Mathematical Society, Providence, RI, 1999).
18.
Hovey, M., Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra
165(1) (2001), 63–127.
19.
Huber, R., Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Aspects of Mathematics, Volume E30 (Friedr. Vieweg & Sohn, Braunschweig, 1996).
20.
Mazza, C., Voevodsky, V. and Weibel, C., Lecture Notes on Motivic Cohomology, Clay Mathematics Monographs, Volume 2 (American Mathematical Society, Providence, RI, 2006).
21.
Scholze, P., Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci.
116 (2012), 245–313.
22.
Scholze, P.,
p-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi
1(e1) (2013), 77.
23.
Scholze, P., Etale cohomology of diamonds, preprint, 2017, arXiv:1709.07343 [math.AG]. 24.
Suslin, A., On the K-theory of algebraically closed fields, Invent. Math.
73(2) (1983), 241–245.
25.
Suslin, A., On the
$K$
-theory of local fields, in Proceedings of the Luminy Conference on Algebraic
$K$
-theory (Luminy, 1983), J. Pure Appl. Algebra
34(2–3) (1984), 301–318. 26.
Vezzani, A., Effective motives with and without transfers in characteristic p
, Adv. Math.
306 (2017), 852–879.
27.
Vezzani, A., The Monsky–Washnitzer and the overconvergent realizations, Int. Math. Res. Not. IMRN
11 (2018), 3443–3489.
28.
Vezzani, A., Rigid cohomology via the tilting equivalence, J. Pure Appl. Algebra
223(2) (2019), 818–843.
29.
Vezzani, A., A motivic version of the theorem of Fontaine and Wintenberger, Compos. Math.
155(1) (2019), 38–88.
30.
Vezzani, A., The Berkovich realization for rigid analytic motives, J. Algebra
527 (2019), 30–54.
31.
Voevodsky, V., Suslin, A. and Friedlander, E. M., Cycles, Transfers, and Motivic Homology Theories, Annals of Mathematics Studies, Volume 143 (Princeton University Press, Princeton, NJ, 2000).