Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-04-30T19:46:30.838Z Has data issue: false hasContentIssue false

UNIFORM BOUNDS FOR $\operatorname {GL}(3)\times \operatorname {GL}(2)$ L-FUNCTIONS

Published online by Cambridge University Press:  17 October 2023

Bingrong Huang*
Affiliation:
Data Science Institute and School of Mathematics, Shandong University, Jinan, Shandong 250100, China

Abstract

In this paper, we prove uniform bounds for $\operatorname {GL}(3)\times \operatorname {GL}(2) \ L$-functions in the $\operatorname {GL}(2)$ spectral aspect and the t aspect by a delta method. More precisely, let $\phi $ be a Hecke–Maass cusp form for $\operatorname {SL}(3,\mathbb {Z})$ and f a Hecke–Maass cusp form for $\operatorname {SL}(2,\mathbb {Z})$ with the spectral parameter $t_f$. Then for $t\in \mathbb {R}$ and any $\varepsilon>0$, we have

$$\begin{align*}L(1/2+it,\phi\times f) \ll_{\phi,\varepsilon} (t_f+|t|)^{27/20+\varepsilon}. \end{align*}$$
Moreover, we get subconvexity bounds for $L(1/2+it,\phi \times f)$ whenever $|t|-t_f \gg (|t|+t_f)^{3/5+\varepsilon }$.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, R., Sharma, P. and Singh, S., $t$ -aspect subconvexity for $\mathrm{GL}(2)\times \mathrm{GL}(2) L$ -function, J. Number Theory 240 (2022), 296324.CrossRefGoogle Scholar
Aggarwal, K., A new subconvex bound for $\mathrm{GL}(3)\ L$ -functions in the $t$ -aspect, Int. J. Number Theory 17(5) (2021), 11111138.CrossRefGoogle Scholar
Bernstein, J. and Reznikov, A., Subconvexity bounds for triple $L$ -functions and representation theory, Ann. of Math. (2) 172(3) (2010), 16791718.CrossRefGoogle Scholar
Blomer, V., Subconvexity for twisted $L$ -functions on $\mathrm{GL}(3)$ , Amer. J. Math. 134(5) (2012), 13851421.CrossRefGoogle Scholar
Blomer, V. and Buttcane, J., On the subconvexity problem for $L$ -functions on $\mathrm{GL}(3)$ , Ann. Sci. Éc. Norm. Supér. (4) 53(6) (2020), 14411500.CrossRefGoogle Scholar
Blomer, V., Jana, S. and Nelson, P., The Weyl bound for triple product L-functions, Duke Math. J. 172(6) (2023), 11731234.CrossRefGoogle Scholar
Blomer, V., Khan, R. and Young, M., Distribution of mass of holomorphic cusp forms, Duke Math. J. 162(14) (2013), 26092644.CrossRefGoogle Scholar
Burgess, D., On character sums and $L$ -series. II, Proc. London Math. Soc. (3), s3-13(1) (1963), 524536.CrossRefGoogle Scholar
Duke, W., Friedlander, J. and Iwaniec, H., Bounds for automorphic L-functions, Invent. Math. 112(1) (1993), 18.CrossRefGoogle Scholar
Duke, W., Friedlander, J. and Iwaniec, H., The subconvexity problem for Artin $L$ -functions, Invent. Math. 149(3) (2002), 489577.CrossRefGoogle Scholar
Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F., Higher transcendental functions, in Bateman Manuscript Project, II, pp. xvii+396 (McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953). Based, in part, on notes left by Harry Bateman.Google Scholar
Goldfeld, D., Automorphic forms and $L$ -functions for the group $\mathrm{GL}\left(n,\mathbb{R}\right)$ , in Cambridge Studies in Advanced Mathematics, vol. 99, pp. xiv+493 (Cambridge University Press, Cambridge, 2006). With an appendix by Kevin A. Broughan.Google Scholar
Goldfeld, D. and Li, X., Voronoi formulas on $\mathrm{GL}(n)$ , Int. Math. Res. Not. 2006 (2006), Art. ID 86295.Google Scholar
Good, A., The square mean of Dirichlet series associated with cusp forms, Mathematika, 29 (1982), 278295.CrossRefGoogle Scholar
Harcos, G. and Michel, P., The subconvexity problem for Rankin-Selberg $L$ -functions and equidistribution of Heegner points. II, Invent. Math. 163(3) (2006), 581655.CrossRefGoogle Scholar
Heath-Brown, D. R., Hybrid bounds for Dirichlet $L$ -functions, Invent. Math. 47(2) (1978), 149170.CrossRefGoogle Scholar
Huang, B., Hybrid subconvexity bounds for twisted $L$ -functions on GL(3), Sci. China Math. 64(3) (2021), 443478.CrossRefGoogle Scholar
Huang, B., On the Rankin–Selberg problem, Math. Ann. 381(3–4) (2021), 12171251.CrossRefGoogle Scholar
Huang, B. and Xu, Z., Hybrid subconvexity bounds for twists of $\mathrm{GL}(3)\times \mathrm{GL}(2) L$ -functions, Algebra Number Theory 17(10) (2023), 17151752.CrossRefGoogle Scholar
Ivić, A., On sums of Hecke series in short intervals, J. Théor. Nombres Bordeaux 13(2) (2001), 453468.CrossRefGoogle Scholar
Iwaniec, H., The spectral growth of automorphic $L$ -functions, J. Reine Angew. Math. 428 (1992), 139159.Google Scholar
Iwaniec, H. and Kowalski, E., Analytic number theory, in American Mathematical Society Colloquium Publications, vol. 53 (American Mathematical Society, Providence, RI, 2004).Google Scholar
Jutila, M. and Motohashi, Y., Uniform bound for Hecke $L$ -functions, Acta Math. 195 (2005), 61115.CrossRefGoogle Scholar
Jutila, M. and Motohashi, Y., Uniform bounds for Rankin-Selberg $\mathrm{L}$ -functions, in Multiple Dirichlet series, automorphic forms, and analytic number theory, Proceedings of Symposia in Pure Mathematics, vol. 75, pp. 243256 (American Mathematical Society, Providence, RI, 2006).Google Scholar
Kim, H., Functoriality for the exterior square of $\mathrm{G}{\mathrm{L}}_4$ and the symmetric fourth of $\mathrm{G}{\mathrm{L}}_2$ , J. Amer. Math. Soc. 16(1) (2003), 139183. With Appendix 1 by Ramakrishnan and Appendix 2 by Kim and Sarnak.CrossRefGoogle Scholar
Kıral, E., Petrow, I., and Young, M., Oscillatory integrals with uniformity in parameters, J. Théor. Nombres Bordeaux 31(1) (2019), 145159.CrossRefGoogle Scholar
Kowalski, E., Michel, P. and VanderKam, J., Rankin–Selberg $L$ -functions in the level aspect, Duke Math. J. 114(1) (2002), 123191.CrossRefGoogle Scholar
Kumar, S., Subconvexity bound for $\mathrm{GL}(3)\times \mathrm{GL}(2)\ L$ -functions in $\mathrm{GL}(2)$ spectral aspect, To appear in J. Eur. Math. Soc. (JEMS), https://doi.org/10.48550/arXiv.2007.05043.CrossRefGoogle Scholar
Lau, Y., Liu, J. and Ye, Y., A new bound ${k}^{2/3+\varepsilon }$ for Rankin-Selberg $L$ -functions for Hecke congruence subgroups, IMRP Int. Math. Res. Pap. 2006 (2006), Art. ID 35090.Google Scholar
Li, X., Bounds for $\mathrm{GL}(3)\times \mathrm{GL}(2)\ L$ -functions and $\mathrm{GL}(3)\ L$ -functions, Ann. of Math. (2) 173(1) (2011), 301336.CrossRefGoogle Scholar
Lin, Y., Bounds for twists of $\mathrm{GL}(3)\ L$ -functions, J. Eur. Math. Soc. 23(6) (2021), 18991924.CrossRefGoogle Scholar
Lin, Y. and Sun, Q., Analytic twists of $\mathrm{G}{\mathrm{L}}_3\times \mathrm{G}{\mathrm{L}}_2$ automorphic forms, Int. Math. Res. Not. IMRN 2021(19) (2021), 1514315208.CrossRefGoogle Scholar
Liu, J. and Ye, Y., Subconvexity for Rankin-Selberg $L$ -functions of Maass forms, Geom. Funct. Anal. 12 (2002), 12961323.CrossRefGoogle Scholar
McKee, M., Sun, H. and Ye, Y., Improved subconvexity bounds for $\mathrm{GL}(2)\times \mathrm{GL}(3)$ and $\mathrm{GL}(3)\;L$ -functions by weighted stationary phase, Trans. Amer. Math. Soc. 370(5) (2018), 37453769.CrossRefGoogle Scholar
Meurman, T., On the order of the Maass $\mathrm{L}$ -function on the critical line, in Number theory, Vol. I (Budapest, 1987), Colloquia Mathematica Societatis János Bolyai, 51, pp. 325354 (Elsevier Science Publishing Company, North-Holland, Amsterdam, 1990).Google Scholar
Michel, P. and Venkatesh, A., The subconvexity problem for $\mathrm{G}{\mathrm{L}}_2$ , Publ. Math. Inst. Hautes Études Sci. 111 (2010), 171271.CrossRefGoogle Scholar
Miller, S. and Schmid, W., Automorphic distributions, $L$ -functions, and Voronoi summation for $\mathrm{GL}(3)$ , Ann. of Math. (2) 164(2) (2006), 423488.CrossRefGoogle Scholar
Munshi, R., The circle method and bounds for $L$ -functions–III: $t$ -aspect subconvexity for $\mathrm{GL}(3)\;L$ -functions, J. Amer. Math. Soc. 28(4) (2015), 913938.CrossRefGoogle Scholar
Munshi, R., The circle method and bounds for $L$ -functions–IV: Subconvexity for twists of $\mathrm{GL}(3)\;L$ -functions, Ann. of Math. (2) 182(2) (2015), 617672.CrossRefGoogle Scholar
Munshi, R., Subconvexity for $\mathrm{GL}(3)\times \mathrm{GL}(2)\;L$ -functions in $t$ -aspect, J. Eur. Math. Soc. (JEMS) 24(5) (2021), 15431566.CrossRefGoogle Scholar
Petrow, I. and Young, M., The Weyl bound for Dirichlet $L$ -functions of cube-free conductor, Ann. of Math. (2) 192(2) (2020), 437486.CrossRefGoogle Scholar
Petrow, I. and Young, M., The fourth moment of Dirichlet $L$ -functions along a coset and the Weyl bound, Duke Math. J. 172(10) (2023), 18791960.CrossRefGoogle Scholar
Sarnak, P., Estimates for Rankin-Selberg $L$ -functions and quantum unique ergodicity, J. Funct. Anal. 184(2) (2001), 419453.CrossRefGoogle Scholar
Sharma, P., Subconvexity for $\mathrm{GL}(3)\times \mathrm{GL}(2)$ twists in level aspect, Adv. Math. 404 (2022), part B, 47. With an appendix by Will Sawin.CrossRefGoogle Scholar
Venkatesh, A., Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math. (2) 172(2) (2010), 9891094.CrossRefGoogle Scholar
Wu, H., Explicit subconvexity for $\mathrm{G}{\mathrm{L}}_2$ , Mathematika 68(3) (2022), 921978.CrossRefGoogle Scholar
Weyl, H., Zur abschätzung von $\zeta \left(1+\mathrm{ti}\right)$ , Math. Z. 10 (1921), 88101.CrossRefGoogle Scholar