Let A be a commutative ring. A graded A-algebra U = [oplus ]n[ges ]0 is a standard A-algebra if U0 = A and U = A[U1] is generated as an A-algebra by the elements of U1. A graded U-module F = [oplus ]n[ges ]0Fn is a standard U-module if F is generated as a U-module by the elements of F0, that is, Fn = UnF0 for all n [ges ] 0. In particular, Fn = U1Fn−1 for all n [ges ] 1. Given I, J, two ideals of A, we consider the following standard algebras: the Rees algebra of I, [Rscr](I) = [oplus ]n[ges ]0Intn = A[It] ⊂ A[t], and the multi-Rees algebra of I and J, [Rscr](I, J) = [oplus ]n[ges ]0([oplus ]p+q=nIpJqupvq) = A[Iu, Jv] ⊂ A[u, v]. Consider the associated graded ring of I, [Gscr](I) = [Rscr](I) [otimes] A/I = [oplus ]n[ges ]0In/In+1, and the multi-associated graded ring of I and J, [Gscr](I, J) = [Rscr](I, J) [otimes] A/(I+J) = [oplus ]n[ges ]0([oplus ]p+q=nIpJq/(I+J)IpJq). We can always consider the tensor product of two standard A-algebras U = [oplus ]p[ges ]0Up and V = [oplus ]q[ges ]0Vq as a standard A-algebra with the natural grading U [otimes] V = [oplus ]n[ges ]0([oplus ]p+q=nUp [otimes] Vq). If M is an A-module, we have the standard modules: the Rees module of I with respect to M, [Rscr](I; M) = [oplus ]n[ges ]0InMtn = M[It] ⊂ M[t] (a standard [Rscr](I)-module), and the multi-Rees module of I and J with respect to M, [Rscr](I, J; M) = [oplus ]n[ges ]0([oplus ]p+q=nIpJqMupvq) = M[Iu, Jv] ⊂ M[u, v] (a standard [Rscr](I, J)-module). Consider the associated graded module of M with respect to I, [Gscr](I; M) = [Rscr](I; M) [otimes] A/I = [oplus ]n[ges ]0InM/In+1M (a standard [Gscr](I)-module), and the multi-associated graded module of M with respect to I and J, [Gscr](I, J; M) = [Rscr](I, J; M) [otimes] A/(I+J) = [oplus ]n[ges ]0([oplus ]p+q=nIpJqM/(I+J)IpJqM) (a standard [Gscr](I, J)-module). If U, V are two standard A-algebras, F is a standard U-module and G is a standard V-module, then F [otimes] G = [oplus ]n[ges ]0([oplus ]p+q=nFp [otimes] Gq) is a standard U [otimes] V-module.
Denote by π[ratio ][Rscr](I) [otimes] [Rscr](J; M) → [Rscr](I, J; M) and σ[ratio ][Rscr](I, J; M) → [Rscr](I+J; M)the natural surjective graded morphisms of standard [Rscr](I) [otimes] [Rscr](J)-modules. Let ϕ[ratio ][Rscr](I) [otimes] [Rscr](J; M) → [Rscr](I+J; M) be σ∘π. Denote by &πmacr;[ratio ][Gscr](I) [otimes] [Gscr](J; M) → [Gscr](I, J; M) and &σmacr;[ratio ][Gscr](I, J; M) → [Gscr](I+J; M) the tensor product of π and σ by A/(I+J); these are two natural surjective graded morphisms of standard [Gscr](I) [otimes] [Gscr](J)-modules. Let &ϕmacr;[ratio ][Gscr](I) [otimes] [Gscr](J; M) → [Gscr](I+J; M) be &σmacr;∘&πmacr;. The first purpose of this paper is to prove the following theorem.