Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-lwxm7 Total loading time: 0.496 Render date: 2021-06-19T01:41:39.723Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Liana density declined and basal area increased over 12 y in a subtropical montane forest in Argentina

Published online by Cambridge University Press:  21 June 2017

Sergio Javier Ceballos
Affiliation:
Instituto de Ecología Regional, UNT-CONICET. Casilla de Correo 34. CP. 4107. Yerba Buena, Tucumán, Argentina
Agustina Malizia
Affiliation:
Instituto de Ecología Regional, UNT-CONICET. Casilla de Correo 34. CP. 4107. Yerba Buena, Tucumán, Argentina
Corresponding
E-mail address:

Abstract:

Changes in density and basal area of lianas ≥2 cm diameter were monitored in two 1-ha permanent plots in a subtropical montane mature forest of north-western Argentina. Liana stems were identified and measured at 130 cm from the main rooting point in two censuses conducted in 2003 and 2015. Between censuses, the density of liana stems decreased 13.3%, while basal area increased 11.5%. Density and basal area decreased mainly among lianas of 2–3 cm diameter, but increased in lianas ≥4 cm diameter. Quechualia fulta (Asteraceae), Serjania meridionalis (Sapindaceae) and Chamissoa altissima (Amaranthaceae) suffered large reductions in stem density and basal area. Dissimilar responses of density and basal area of lianas might be a consequence of the suppression of anthropogenic disturbances (e.g. livestock browsing) and the decrease of treefall gap frequency in the studied forest in recent decades. Light-demanding liana species decreased and shade-tolerant species increased possibly in response to the decline in the light availability associated with forest recovery from past disturbance. Lianas increased in basal area to a lesser extent compared with reports from several tropical and subtropical forests where lianas are increasing dramatically.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

BIANCHI, A. R. & YÁÑEZ, C. 1992. Las Precipitaciones del Noroeste Argentino. INTA, Salta. 383 pp.Google Scholar
BONGERS, F. & EWANGO, C. E. N. 2015. Dynamics of lianas in DR Congo. Pp. 2335 in Schnitzer, S. A., Bongers, F., Burnham, R. J. & Putz, F. E. (eds). Ecology of lianas. Wiley Blackwell, Oxford.Google Scholar
CABALLÉ, G. & MARTIN, A. 2001. Thirteen years of change in trees and lianas in a Gabonese rainforest. Plant Ecology 152:167173.CrossRefGoogle Scholar
CABRERA, A. L. & WILLINK, A. 1980. Biogeografia de América Latina. Monografía No. 13. OEA, Washington, DC. 121 pp.Google Scholar
CAI, Z. Q., POORTER, L., CAO, K. F. & BONGERS, F. 2007. Seedling growth strategies in Bauhinia species: comparing lianas and trees. Annals of Botany 100:831838.CrossRefGoogle ScholarPubMed
CAMPANELLO, P. I., GARIBALDI, J. F., GATTI, M. G. & GOLDSTEIN, G. 2007. Lianas in a subtropical Atlantic Forest: host preference and tree growth. Forest Ecology and Management 242:250259.CrossRefGoogle Scholar
CAMPANELLO, P. I., VILLAGRA, M., GARIBALDI, J. F., RITTER, L. J., ARAUJO, J. J. & GOLDSTEIN, G. 2012. Liana abundance, tree crown infestation, and tree regeneration ten years after liana cutting in a subtropical forest. Forest Ecology and Management 284:213221.CrossRefGoogle Scholar
CHAVE, J., OLIVIER, J., BONGERS, F., CHÂTELET, P., FORGET, P. M., VAN DER MEER, P., NORDEN, N., RIÉRA, B. & CHARLES-DOMINIQUE, P. 2008. Aboveground biomass and productivity in a rain forest of eastern South America. Journal of Tropical Ecology 24:355366.CrossRefGoogle Scholar
CHEN, Y. J., BONGERS, F., CAO, K. F. & CAI, Z. Q. 2008. Above- and below-ground competition in high and low irradiance: tree seedling responses to a competing liana Byttneria grandifolia . Journal of Tropical Ecology 24:517524.CrossRefGoogle Scholar
CONDIT, R., ASHTON, P., BUNYAVEJCHEWIN, S., DATTARAJA, H. S., DAVIES, S., ESUFALI, S., EWANGO, C., FOSTER, R., GUNATILLEKE, I. A., GUNATILLEKE, C. V., HALL, P., HARMS, K. E., HART, T., HERNANDEZ, C., HUBBELL, S., ITOH, A., KIRATIPRAYOON, S., LAFRANKIE, J., DE LAO, S. L., MAKANA, J. R., NOOR, M. N., KASSIM, A. R., RUSSO, S., SUKUMAR, R., SAMPER, C., SURESH, H. S., TAN, S., THOMAS, S., VALENCIA, R., VALLEJO, M., VILLA, G. & ZILLIO, T. 2006. The importance of demographic niches to tree diversity. Science 313:98101.CrossRefGoogle ScholarPubMed
DEWALT, S. J., SCHNITZER, S. A. & DENSLOW, J. S. 2000. Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. Journal of Tropical Ecology 16:119.CrossRefGoogle Scholar
EASDALE, T. A., HEALEY, J. R., GRAU, H. R. & MALIZIA, A. 2007. Tree life histories in a mountain subtropical forest: forest species differ independently by shade-tolerance, turnover rate and substrate preference. Journal of Ecology 95:12341249.CrossRefGoogle Scholar
EWANGO, C. E. N. 2010. The liana assemblage of a Congolian rainforest: diversity, structure and dynamics. Ph.D. thesis, Wageningen University, the Netherlands.Google Scholar
FOSTER, J. R., TOWNSEND, P. A. & ZGANJAR, C. E. 2008. Spatial and temporal patterns of gap dominance by low-canopy lianas detected using EO-1 Hyperion and Landsat Thematic Mapper. Remote Sensing of Environment 112:21042117.CrossRefGoogle Scholar
GERWING, J. J. 2004. Life history diversity among six species of canopy lianas in an old-growth forest of the eastern Brazilian Amazon. Forest Ecology and Management 190:5772.CrossRefGoogle Scholar
GERWING, J. J. & FARIAS, D. L. 2000. Integrating liana abundance and forest stature into an estimate of aboveground biomass for an eastern Amazonian forest. Journal of Tropical Ecology 16:327336.CrossRefGoogle Scholar
GERWING, J. J., SCHNITZER, S. A., BURNHAM, R. J., BONGERS, F., CHAVE, J., DEWALT, S. J., EWANGO, C. E. N., FOSTER, R., KENFACK, D., MARTÍNEZ-RAMOS, M., PARREN, M., PARTHASARATHY, N., PÉREZ-SALICRUP, D. R., PUTZ, F. E. & THOMAS, D.W. 2006. A standard protocol for liana censuses. Biotropica 38: 256261.CrossRefGoogle Scholar
GIANOLI, E., SALDAÑA, A., JIMÉNEZ-CASTILLO, M. & VALLADARES, F. 2010. Distribution and abundance of vines along the light gradient in a southern temperate rain forest. Journal of Vegetation Science 21:6673.CrossRefGoogle Scholar
GILBERT, B., WRIGHT, S. J., MULLER-LANDAU, H. C., KITAJIMA, K. & HERNANDEZ, A. 2006. Life history trade-offs in tropical trees and lianas. Ecology 87:12811288.CrossRefGoogle ScholarPubMed
GRAU, H. R. 2002. Scale-dependent relationships between treefalls and species richness in a neotropical montane forest. Ecology 83:25912601.CrossRefGoogle Scholar
GRAU, H. R. & BROWN, A. D. 1998. Structure, composition, and inferred dynamics of a subtropical montane forest of northwestern Argentina. Pp. 715726 in Dallmaier, F. & Comiskey, J. A. (eds). Forest biodiversity in North, Central and South America, and the Caribbean. Research and monitoring. MAB Series, Parthenon, Carnforth.Google Scholar
GRAU, H. R., HERNÁNDEZ, M. E., GUTIERREZ, J., GASPARRI, N. I., CASAVECCHIA, M. C., FLORES, E. E. & PAOLINI, L. 2008. A peri-urban Neotropical forest transition and its consequences for environmental services. Ecology and Society 13:35.CrossRefGoogle Scholar
GRAU, H. R., PAOLINI, L., MALIZIA, A. & CARILLA, J. 2010. Distribución, estructura y dinámica de los bosques de la sierra de San Javier (Tucumán, Argentina). Pp. 3350 in Grau, H. R. (ed.). Ecología de una interfase natural-urbana. La sierra de San Javier y el Gran San Miguel de Tucumán. EDUNT, San Miguel de Tucumán, Argentina.Google Scholar
HEGARTY, E. E. & CABALLÉ, G. 1991. Distribution and abundance of vines in forest communities. Pp. 313335 in Putz, F. E. & Mooney, H. A. (eds). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
INGWELL, L. L., WRIGHT, S. J., BECKLUND, K. K., HUBBELL, S. P. & SCHNITZER, S. A. 2010. The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. Journal of Ecology 98:879887.CrossRefGoogle Scholar
KITAJIMA, K. 1994. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419428.CrossRefGoogle ScholarPubMed
LAURANCE, W. F., ANDRADE, A. S., MAGRACH, A., CAMARGO, J. L. C., VALSKO, J. J., CAMPBELL, M., FEARNSIDE, P. M., EDWARDS, W., LOVEJOY, T. M. & LAURANCE, S. G. 2014. Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forest. Ecology 95:16041611.CrossRefGoogle Scholar
LONDRÉ, R. A. & SCHNITZER, S. F. 2006. The distribution of lianas and their change in abundance in temperate forests over the past 45 years. Ecology 87:29732978.CrossRefGoogle ScholarPubMed
MALIZIA, A. 2007. Interacciones entre lianas y árboles en una selva montana madura de las yungas argentinas. Ph.D. thesis, Universidad Nacional de Tucumán, Argentina.Google Scholar
MALIZIA, A. & GRAU, H. R. 2006. Liana-host tree associations in a subtropical montane forest of north western Argentina. Journal of Tropical Ecology 22:331339.CrossRefGoogle Scholar
MALIZIA, A. & GRAU, H. R. 2008. Landscape context and microenvironments influences on liana communities within treefall gaps. Journal of Vegetation Science 19:597604.CrossRefGoogle Scholar
MALIZIA, A., GRAU, H. R. & LICHSTEIN, J. W. 2010. Soil phosphorus and disturbance influence liana communities in a subtropical montane forest. Journal of Vegetation Science 21:551560.CrossRefGoogle Scholar
MALIZIA, A., EASDALE, T. A. & GRAU, H. R. 2013. Rapid structural and compositional change in an old-growth subtropical forest: using plant traits to identify probable drivers. PLoS ONE 8:e73546.CrossRefGoogle Scholar
MORI, H., KAMIJO, T. & MASAKI, T. 2016. Liana distribution and community structure in an old-growth temperate forest: the relative importance of past disturbances, host trees, and microsite characteristics. Plant Ecology 217:11711182.CrossRefGoogle Scholar
PANDIAN, E. & PARTHASARATHY, N. 2016. Decadal (2003–2013) changes in liana diversity, abundance and aboveground biomass in four inland tropical dry evergreen forest sites of peninsular India. Journal of Forestry Research 27:133146.CrossRefGoogle Scholar
PEÑALOSA, J. 1984. Basal branching and vegetative spread in two tropical rain forest lianas. Biotropica 16:19.CrossRefGoogle Scholar
PHILLIPS, O. L., VÁSQUEZ MARTÍNEZ, R., ARROYO, L., BAKER, T. R., KILLEN, T., LEWIS, S. L., MALHI, Y., MONTEAGUDO MENDOZA, A., NEILL, D., NÚÑEZ VARGAS, P., ALEXIADES, M., CERÓN, C., DI FIORE, A., ERWIN, T., JARDIM, A., PALACIOS, W., SALDIAS, M. & VINCETI, B. 2002. Increasing dominance of large lianas in Amazonian forests. Nature 418:770774.CrossRefGoogle ScholarPubMed
PUTZ, F. E. 1984. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:17131724.CrossRefGoogle Scholar
PUTZ, F. E. & HOLBROOK, N. M. 1991. Biomechanical studies of vines. Pp. 7397 in Putz, F. E. & Mooney, H. A. (eds). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
ROEDER, M., HÖLSCHER, D. & KOSSMANN-FERRAZ, I. D. 2012. Traits and growth of liana regeneration in primary and secondary forests of central Amazonia. Applied Vegetation Science 15:108118.CrossRefGoogle Scholar
SCHNITZER, S. A. 2005. A mechanistic explanation for global patterns of liana abundance and distribution. American Naturalist 166:262276.CrossRefGoogle ScholarPubMed
SCHNITZER, S. A. & BONGERS, F. 2011. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters 14:397406.CrossRefGoogle ScholarPubMed
SCHNITZER, S. A., DALLING, J. W. & CARSON, W. P. 2000. The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. Journal of Ecology 88:655666.CrossRefGoogle Scholar
SCHNITZER, S. A., KUZEE, M. & BONGERS, F. 2005. Disentangling above and below-ground competition between lianas and trees in a tropical forest. Journal of Ecology 93:11151125.CrossRefGoogle Scholar
SCHNITZER, S. A., MANGAN, S. A., DALLING, J. W., BALDECK, C. A., HUBBELL, S. P., LEDO, A., MULLER-LANDAU, H., TOBIN, M. F., AGUILAR, S., BRASSFIELD, D., HERNANDEZ, A., LAO, S., PEREZ, R., VALDEZ, O. & YORKE, S. R. 2012. Liana abundance, diversity, and distribution on Barro Colorado Island, Panama. PLoS ONE 7:e52114.CrossRefGoogle ScholarPubMed
SCHNITZER, S. A., VAN DER HEIJDEN, G., MASCARO, J. & CARSON, W. P. 2014. Lianas in gaps reduce carbon accumulation in a tropical forest. Ecology 95:30083017.CrossRefGoogle Scholar
SCHNITZER, S. A., MANGAN, S. A. & HUBBELL, S. P. 2015. The lianas of Barro Colorado Island, Panama. Pp. 7690 in Schnitzer, S. A., Bongers, F., Burnham, R. J. & Putz, F. E. (eds). Ecology of lianas. Wiley Blackwell, Oxford.Google ScholarPubMed
THOMAS, D., BURNHAM, R. J., CHUYONG, G., KENFACK, D. & SAINGE, M. N. 2015. Liana abundance and diversity in Cameroon's Korup National Park. Pp. 1122 in Schnitzer, S. A., Bongers, F., Burnham, R. J. & Putz, F. E. (eds). Ecology of lianas. Wiley Blackwell, Oxford.Google Scholar
TOLEDO-ACEVES, T. & SWAINE, M. D. 2008. Effect of lianas on tree regeneration in gaps and forest understory in a tropical forest in Ghana. Journal of Vegetation Science 19:717728.CrossRefGoogle Scholar
TORRES BRUCHMANN, E. 1978. Las clasificaciones climáticas de Koppen y Thornthwaite. Serie Didáctica Facultad de Agronomía y Zootecnia UNT 48:127.Google Scholar
VAN DER HEIJDEN, G. M. F. & PHILLIPS, O. L. 2009. Liana infestation impacts tree growth in a lowland tropical moist forest. Biogeosciences 6:22172226.CrossRefGoogle Scholar
VAN DER HEIJDEN, G. M. F., POWERS, J. S. & SCHNITZER, S. A. 2015. Lianas reduce carbon accumulation and storage in tropical forests. Proceedings of the National Academy of Sciences USA 112:1326713271.CrossRefGoogle ScholarPubMed
WRIGHT, S. J. & CALDERON, O. 2006. Seasonal, El Nino and longer term changes in flower and seed production in a moist tropical forest. Ecology Letters 9:3544.Google Scholar
WRIGHT, S. J., CALDERON, O., HERNANDEZ, A. & PATON, S. 2004. Are lianas increasing in importance in tropical forests? A 17-year record from Panama. Ecology 85:484489.CrossRefGoogle Scholar
YORKE, S. R., SCHNITZER, S. A., MASCARO, J., LETCHER, S. G. & CARSON, W. P. 2013. Increasing liana abundance and basal area in a tropical forest: the contribution of long-distance clonal colonization. Biotropica 45:317324.CrossRefGoogle Scholar
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Liana density declined and basal area increased over 12 y in a subtropical montane forest in Argentina
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Liana density declined and basal area increased over 12 y in a subtropical montane forest in Argentina
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Liana density declined and basal area increased over 12 y in a subtropical montane forest in Argentina
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *