Hostname: page-component-797576ffbb-58z7q Total loading time: 0 Render date: 2023-12-03T20:13:17.876Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Soil modification by termites in a sandy-soil vegetation in the Brazilian Atlantic rain forest

Published online by Cambridge University Press:  28 August 2013

Tathiane Santi Sarcinelli
Soil Science Department, Federal University of Viçosa (UFV), Av. PH Rolfs, s/n, Campus Universitário, 36570-000, Viçosa-MG, Brazil
Carlos Ernesto Gonçalves Reynaud Schaefer*
Soil Science Department, Federal University of Viçosa (UFV), Av. PH Rolfs, s/n, Campus Universitário, 36570-000, Viçosa-MG, Brazil
Elpídio Inácio Fernandes Filho
Soil Science Department, Federal University of Viçosa (UFV), Av. PH Rolfs, s/n, Campus Universitário, 36570-000, Viçosa-MG, Brazil
Reginaldo Gonçalves Mafia
Soil Science Department, Federal University of Viçosa (UFV), Av. PH Rolfs, s/n, Campus Universitário, 36570-000, Viçosa-MG, Brazil
Andreza Viana Neri
Soil Science Department, Federal University of Viçosa (UFV), Av. PH Rolfs, s/n, Campus Universitário, 36570-000, Viçosa-MG, Brazil
1Corresponding author. Email:


Termites play a critical role in the regulation of soil processes, for example, water retention, nutrient cycling, and the formation and maintenance of soil structure. There is a consensus that mound-building termites modify physical and chemical soil properties in clay soils, but there is limited investigation into their influence for sandy soils in the Brazilian Atlantic rain forest. We tested the hypotheses that the termitosphere effectively improves properties of sandy soil, and that the role of termite soil particle selection is of greater importance in soils with higher sand concentration and lower nutrient status. The work was conducted in three vegetation physiognomies: woodland, savanna and grassland. In the woodland physiognomy we sampled in the border and in the interior, totalling four studied areas. We described a soil profile and collected five samples of termitaria and surface soil in each area. Also, in three 100-m2 plots allotted in each area, termite-mound density and volume were estimated, and termites were collected for taxonomic identification. Soil samples were submitted to physical and chemical analysis, and regression models were employed to analyse termite particle selection ability in different soil conditions. In most areas, the concentrations of nutrients, organic carbon and clay-size particles were significantly higher in termite mounds than in surface soils. On a weight basis, termite mounds had up to 32 times more nutrients, 12 times more organic carbon, and five times more clay than surrounding soils, however, aluminium toxicity was lower in termite mounds. Regression models demonstrated that the role of termites in soil particle selection is of greater ecological importance with decreasing soil nutrient status and increasing sand concentration. Therefore, termites greatly improve soil properties, representing truly ecosystem engineers in sandy soils, with an average soil turnover by mound-building activity reaching 10.5 m3 ha−1.

Research Article
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



ALVAREZ, V. V. H., NOVAIS, R. F., DIAS, L. E. & OLIVEIRA, J. A. 2000. Determinação e uso do fósforo remanescente. Boletim SBCS 25:2732.Google Scholar
BENITES, V. M., MENDONÇA, E. S., SCHAEFER, C. E. G. R., NOVOTNY, E. H., REIS, E. L. & KER, J. C. 2005. Properties of black soil humic acids from high altitude rocky complexes in Brazil. Geoderma 127:104113.Google Scholar
BLACK, H. I. J. & OKWAKOL, M. J. N. 1997. Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of termites. Applied Soil Ecology 6:3753.Google Scholar
BRAUMAN, A. 2000. Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: a review. European Journal of Soil Biology 36:117125.Google Scholar
BRECKLE, S. W. 2002. Walter's vegetation of the world: the ecological systems of the geo-biosphere. (Fourth edition). Springer-Verlag, Berlin. 527 pp.Google Scholar
CALDERON, R. A. & CONSTANTINO, R. 2007. A survey of the termite fauna (Isoptera) of a eucalypt plantation in Central Brazil. Neotropical Entomology 36:391395.Google Scholar
CONSTANTINO, R. 1999. Chave ilustrada para identificação dos gêneros de cupins (Insecta: Isoptera) que ocorrem no Brasil. Papéis Avulsos em Zoologia 40:387448.Google Scholar
CORRÊA, M. M. 2005. Óxidos de ferro e tipificação de caulinitas na gênese de solos coesos do ambiente dos Tabuleiros Costeiros. Doctoral thesis, Federal University of Viçosa, Viçosa, Brazil. 194 pp.Google Scholar
COVENTRY, R. J., HOLT, J. A. & SINCLAIR, D. F. 1988. Nutrient cycling by mound-building termites in low-fertility soils of semi-arid tropical Australia. Australian Journal of Soil Research 26:375390.Google Scholar
DANGERFIELD, J. M. 1991. Soil modification by Cubitermes sankurensis (Wassman) (Isoptera: Termitidae) within a Miombo woodland site in Zimbabwe. African Journal of Ecology 29:267269.Google Scholar
DANGERFIELD, J. M., MCCARTHY, T. S. & ELLERY, W. N. 1998. The mound-building termite Macrotermes michaelseni as an ecosystem engineer. Journal of Tropical Ecology 14:507520.Google Scholar
DAVIES, R. 2002. Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation. Oecologia 133:233242.Google Scholar
DESOUZA, O. F. F. & BROWN, V. 1994. Effects of habitat fragmentation on Amazonian termite communities. Journal of Tropical Ecology 10:197206.Google Scholar
DESOUZA, O. F. F., ALBUQUERQUE, L., TONELLO, V., PINTO, L. & REIS, R. 2003. Effects of fire on termite generic richness in a savanna ecosystem (‘Cerrado’) of Central Brazil. Sociobiology 43:639649.Google Scholar
DONOVAN, S. E., EGGLETON, P. & BIGNELL, D. E. 2001. Gut content analysis and a new feeding group classification of termites. Ecological Entomology 26:356366.Google Scholar
EMBRAPA. 1997. Manual de métodos de análises de solo. (Second edition). Embrapa Solos, Rio de Janeiro. 212 pp.Google Scholar
EMBRAPA. 2000. Levantamento generalizado e semidetalhado de solos da Aracruz no estado do Espírito Santo e no extremo sul do estado da Bahia e sua aplicação aos plantios de eucalipto. Embrapa Solos, Rio de Janeiro. 111 pp.Google Scholar
EMBRAPA. 2006. Sistema Brasileiro de classificação de solos. (Second edition). Embrapa Solos, Rio de Janeiro. 306 pp.Google Scholar
FREYMANN, B. P., BUITENWERF, R., DESOUZA, O. F. F. & OLFF, H. 2008. The importance of termites (Isoptera) for the recycling of herbivore dung in tropical ecosystems: a review. European Journal of Entomology 105:165173.Google Scholar
GARNIER-SILLAM, E. & HARRY, M. 1995. Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: its influence on soil structure stability. Insectes Sociaux 42:167185.Google Scholar
GONÇALVES, T. T., DESOUZA, O. F. F., REIS, R. & RIBEIRO, S. P. 2005. Effect of tree size and growth form on the presence and activity of arboreal termites (Insecta: Isoptera) in the Atlantic rain forest. Sociobiology`18 46:421432.Google Scholar
JONES, C. G., LAWTON, J. H. & SHACHAK, M. 1994. Organisms as ecosystem engineers. Oikos 69:373386.Google Scholar
JOUQUET, P., LEPAGE, M. & VELDE, B. 2002. Termite soil preferences and particle selections: strategies related to ecological requirements. Insectes Sociaux 49:17.Google Scholar
JOUQUET, P., MATHIEU, J., BAROT, S. & CHOOSAI, C. 2007. Soil engineers as ecosystem heterogeneity drivers. Pp. 187198 in Muñoz, S. I. (ed.). Ecology research progress. Nova Science Publishers, Inc, New York.Google Scholar
JUNGERIUS, P. D., VAN DEN ANCKER, J. A. M. & MÜCHER, H. J. 1999. The contribution of termites to the microgranular structure of soils on the Uasin Gishu Plateau, Kenya. Catena 34:349363.Google Scholar
KASCHUK, G., SANTOS, J. C. P., ALMEIDA, J. A., SINHORATI, D. C. & BERTON, J. F. 2006. Termite activity in relation to natural grassland soil attributes. Scientia Agricola 63:583588.Google Scholar
KONATÉ, S., LE ROUX, X., TESSIER, D. & LEPAGE, M. 1999. Influence of large termitaria on soil characteristics, soil water regime, and tree leaf shedding pattern in a west African savanna. Plant and Soil 206:4760.Google Scholar
LAVELLE, P., BLANCHART, E., MARTIN, A., SPAIN, A. V. & MARTIN, S. 1992. Impact of soil fauna on the properties of soils in the humid tropics. Myths and science of soils of the tropics. SSSA Special Publication 29:157177.Google Scholar
LEE, K. E. & WOOD, T. G. 1971. Termites and soils. Academic Press, London. 251 pp.Google Scholar
LOBRY DE BRUYN, L. A. & CONACHER, A. J. 1990. The role of termites and ants in soil modification: a review. Australian Journal of Soil Research 28:5593.Google Scholar
LOBRY DE BRUYN, L. A. & CONACHER, A. J. 1995. Soil modification by mound-building termites in the central wheatbelt of Western Australia. Australian Journal of Soil Research 33:179193.Google Scholar
MEIRA NETO, J. A. A., SOUZA, A. L., LANA, J. M. & VALENTE, G. E. 2005. Composição florística, espectro biológico e fitofisionomia da vegetação de Muçununga nos municípios de Caravelas e Mucuri, Bahia. Revista Árvore 29:139150.Google Scholar
OLIVEIRA-FILHO, A. T. 1992. Floodplain ‘murundus’ of Central Brazil: evidence for the termite origin hypothesis. Journal of Tropical Ecology 8:119.Google Scholar
RAJEEV, V. & SANJEEV, A. 2011. Impact of termite activity and its effect on soil composition. Tanzania Journal of Natural and Applied Sciences 2:399404.Google Scholar
REEVE, R. & FERGUS, I. F. 1982. Black and white waters and their possible relationship to the podsolization process. Australian Journal of Soil Research 21:5966.Google Scholar
SAPORETTI, A. W. 2009. Vegetação e solos de Mussununga em Caravelas, Bahia. Doctoral thesis, Federal University of Viçosa, Viçosa, Brazil. 127 pp.Google Scholar
SAPORETTI, A. W., SCHAEFER, C. E. G. R., DE SOUZA, A. L., SOARES, M. P., ARAÚJO, D. S. D. & MEIRA-NETO, J. A. A. 2011. Influence of soil physical properties on plants of the Mussununga ecosystem, Brazil. Folia Geobotanica 47:2939.Google Scholar
SARCINELLI, T. S., SCHAEFER, C. E. G. R., LYNCH, L. S., ARATO, H. D., VIANA, J. H. M., ALBUQUERQUE FILHO, M. R. & GONÇALVES, T. T. 2009. Chemical, physical and micromorphological properties of termite mounds and adjacent soils along a toposequence in Zona da Mata, Minas Gerais State, Brazil. Catena 76:107113.Google Scholar
SCHAEFER, C. E. G. R. 2001. Brazilian latosols and their B horizon microstructure as long-term biotic constructs. Australian Journal of Soil Research 39:909926.Google Scholar
SCHAEFER, C. E. G. R., AMARAL, E. F., MENDONçA, B. A. F., OLIVEIRA, H., LANI, J. L., COSTA, L. M. & FERNANDES FILHO, E. I. 2008. Soil and vegetation carbon stocks in Brazilian Western Amazonia: relationships and ecological implications for natural landscapes. Environmental Monitoring and Assessment 140:279289.Google Scholar
VELOSO, H. P., RANGEL FILHO, A. L. R. & LIMA, J. C. A. 1991. Classificação da vegetação brasileira, adaptada a um sistema universal. IBGE, Rio de Janeiro. 124 pp.Google Scholar
WOOD, T. G. 1988. Termites and the soil environment. Biology and Fertility of Soils 6:228236.Google Scholar
WOOD, T. G. & SANDS, W. A. 1978. The role of termites in ecosystems. Pp. 245292 in Brian, M. V. (ed.). Production ecology of ants and termites. Cambridge University Press, Cambridge. 409 pp.Google Scholar
ZAR, J. H. 1999. Biostatistical analysis. Prentice-Hall, Englewood Cliffs. 929 pp.Google Scholar