Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-hl5gf Total loading time: 0.89 Render date: 2023-02-01T02:44:32.350Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Spatial and temporal variation in amphibian metacommunity structure in Chiapas, Mexico

Published online by Cambridge University Press:  04 August 2014

Leticia Margarita Ochoa-Ochoa*
Affiliation:
Conservation Biogeography and Macroecology Group, School of Geography and the Environment, South Parks Road, Oxford OX1 3QY, UK Centre of Macroecology, Evolution and Climate, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
Robert James Whittaker
Affiliation:
Conservation Biogeography and Macroecology Group, School of Geography and the Environment, South Parks Road, Oxford OX1 3QY, UK Centre of Macroecology, Evolution and Climate, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
*
1Corresponding author. Email: leticiaochoa@snm.ku.dk

Abstract:

Amphibians are known to be sensitive to environmental change but their responses at the level of metacommunities to short-term environmental variability are poorly understood. We used field data from two protected areas, La Pera and Nahá (Chiapas, Mexico) to test for variation in metacommunity properties for two consecutive years (2009 and 2010). Amphibians and accompanying environmental data were recorded to a standardized protocol within each landscape, in four or five transects of 50 × 2-m per patch, for 30 and 31 patches, respectively. We found 23 species in La Pera and 30 in Nahá (21 species shared). Metacommunity structure was analysed using reciprocal averaging (RA) ordination by means of metrics for coherence, turnover and boundary clumping, with Spearman rank correlation used to examine relationships with environmental variables. The metacommunity structure varied differentially among the landscapes between years, being classed as quasi-Gleasonian in La Pera in both years, but Clementsian for Nahá in 2009 and Gleasonian for Nahá in 2010. In further illustration of variation between years, in 2009 the principal community gradient (RA axis 1) for La Pera was significantly positively correlated with altitude (r = 0.36), forest disturbance status (r = 0.78), mean canopy cover (r = 0.79) and mean litter depth (r = 0.67), while in 2010 it was correlated with latitude (r = 0.38), mean grass-layer height (r = 0.38), incidence of rainfall prior to sampling (r = 0.35) and presence of temporary ponds (r = 0.45). Our findings support the notion that amphibians respond to short-term environmental changes by individualistic movement within the landscape as well as via population dynamic responses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ADUM, G. B., EICHHORN, M. P., ODURO, W., OFORI-BOATENG, C. & RÖDEL, M.-O. 2013. Two-stage recovery of amphibian assemblages following selective logging of tropical forests. Conservation Biology 27:354363.CrossRefGoogle ScholarPubMed
ALEXANDER, M. A. & EISCHEID, J. K. 2001. Climate variability in regions of amphibian declines. Conservation Biology 15:930942.CrossRefGoogle Scholar
ANDERSON, D. E., GOUDIE, A. S. & PARKER, A. G. 2007. Global environments through the Quaternary. Oxford University Press, Oxford. 392 pp.Google Scholar
BOGERT, C. M. 1969. The eggs and hatchlings of the Mexican leptodactylid frog Eleutherodactylus decoratus Taylor. American Museum Novitates 2376:19.Google Scholar
BRODMAN, R. 2009. A 14-year study of amphibian populations and metacommunities. Herpetological Conservation and Biology 4:106119.Google Scholar
BUCKLEY, J. & BEEBEE, T. J. C. 2004. Monitoring the conservation status of an endangered amphibian: the Natterjack toad Bufo calamita in Britain. Animal Conservation 7:221228.CrossRefGoogle Scholar
CLEMENTS, F. E. 1916. Plant succession: an analysis of the development of vegetation. Carnegie Institute of Washington, Washington. 512 pp.CrossRefGoogle Scholar
CONANP. 2006. Programa de conservación y manejo área de protección de flora y fauna Nahá. Comisión Nacional de Áreas Naturales Protegidas, Mexico City. 178 pp.Google Scholar
DENVER, R. J. 1997. Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis. American Zoologist 37:172184.CrossRefGoogle Scholar
DONNELLY, M. A. & CRUMP, M. L. 1998. Potential effects of climate change on two Neotropical amphibian assemblages. Climatic Change 39:541561.CrossRefGoogle Scholar
DUELLMAN, W. E. & TRUEB, L. 1994. Biology of amphibians. The Johns Hopkins University Press, Baltimore. 670 pp.Google ScholarPubMed
GARCÍA, E. 1988. Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de La República Mexicana). Instituto de Geografía. Universidad Nacional Autónoma de México, Mexico City. 205 pp.Google Scholar
GARCÍA, A. & CABRERA-REVES, A. 2008. Effect of seasonality and vegetation structure on the amphibian and reptile community of the Chamela Biological Station, in Jalisco, Mexico. Acta Zoologica Mexicana Nueva Serie 24:91115.Google Scholar
GARDNER, T. A., BARLOW, J. & PERES, C. A. 2007. Paradox, presumption and pitfalls in conservation biology: the importance of habitat change for amphibians and reptiles. Biological Conservation 138:166179.CrossRefGoogle Scholar
GLEASON, H. A. 1917. The structure and development of the plant association. Bulletin of the Torrey Botanical Club 44:463481.CrossRefGoogle Scholar
GLEASON, H. A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53:726.CrossRefGoogle Scholar
GOTTSBERGER, B. & GRUBER, E. 2004. Temporal partitioning of reproductive activity in a Neotropical anuran community. Journal of Tropical Ecology 20:271280.CrossRefGoogle Scholar
GRØTAN, V., LANDE, R., ENGEN, S., SÆTHER, B.-E. & DEVRIES, P. J. 2012. Seasonal cycles of species diversity and similarity in a tropical butterfly community. Journal of Animal Ecology 81:714723.CrossRefGoogle Scholar
GUO, Q. F., BROWN, J. H. & VALONE, T. J. 2002. Long-term dynamics of winter and summer annual communities in the Chihuahuan Desert. Journal of Vegetation Science 13:575584.CrossRefGoogle Scholar
HARE, K. M., HOARE, J. M. & HITCHMOUGH, R. A. 2007. Investigating natural population dynamics of Naultinus manukanus to inform conservation management of New Zealand's cryptic diurnal geckos. Journal of Herpetology 41:8193.CrossRefGoogle Scholar
HÖDL, W. 1990. Reproductive diversity in Amazonian lowland frogs. Fortschitte der Zoologie 38:4160.Google Scholar
HOLYOAK, M., LEIBOLD, M. A., MOUQUET, N., HOLT, R. D. & HOOPES, M. F. 2005. Metacommunities: a framework for large-scale community ecology. Pp. 131 in Holyoak, M., Leibold, M. A. & Holt, R. D. (eds.). Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago.Google Scholar
JAMESON, D. L. 1954. Social patterns in the leptodactylid frogs Syrrhophus and Eleutherodactylus. Copeia 1954:3638.CrossRefGoogle Scholar
JIANG, L. & MORIN, P. J. 2004. Temperature-dependent interactions explain unexpected responses to environmental warming in communities of competitors. Journal of Animal Ecology 73:569576.CrossRefGoogle Scholar
KEITH, S. A., NEWTON, A. C., MORECROFT, M. D., GOLICHER, D. J. & BULLOCK, J. M. 2011. Plant metacommunity structure remains unchanged during biodiversity loss in English woodlands. Oikos 120:302310.CrossRefGoogle Scholar
LANDE, R., ENGEN, S. & SÆTHER, B.-E. 2003. Stochastic population dynamics in ecology and conservation. Oxford University Press, Oxford. 212 pp.CrossRefGoogle Scholar
LEGENDRE, P. & LEGENDRE, L. 1998. Numerical Ecology. Elsevier Science B. V., Amsterdam. 853 pp.Google Scholar
LEIBOLD, M. A. & MIKKELSON, G. M. 2002. Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos 97:237250.CrossRefGoogle Scholar
LEIBOLD, M. A., HOLYOAK, M., MOUQUET, N., AMARASEKARE, P., CHASE, J. M., HOOPES, M. F., HOLT, R. D., SHURIN, J. B., LAW, R., TILMAN, D., LOREAU, M. & GONZALEZ, A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7:601613.CrossRefGoogle Scholar
LIPS, K. R., MENDELSON, J. R., MUÑOZ-ALONSO, A., CANSECO-MÁRQUEZ, L. & MULCAHY, D. G. 2004. Amphibian population declines in montane southern Mexico: resurveys of historical localities. Biological Conservation 119:555564.CrossRefGoogle Scholar
MAGURRAN, A. E. & DORNELAS, M. 2010. Biological diversity in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences 365:35933597.CrossRefGoogle Scholar
MAGURRAN, A. E. & HENDERSON, P. A. 2010. Temporal turnover and the maintenance of diversity in ecological assemblages. Philosophical Transactions of the Royal Society B: Biological Sciences 365:36113620.CrossRefGoogle Scholar
NEWMAN, R. A. 1998. Ecological constraints on amphibian metamorphosis: interactions of temperature and larval density with responses to changing food level. Oecologia 115:916.CrossRefGoogle Scholar
OCHOA-OCHOA, L. M., BEZAURY-CREEL, J. E., VÁZQUEZ, L.-B. & FLORES-VILLELA, O. 2011. Choosing the survivors? A GIS-based triage support tool for micro-endemics: application to data for Mexican amphibians. Biological Conservation 144:27102718.CrossRefGoogle Scholar
OLSON, D. H., BLAUSTEIN, A. R. & O’HARA, R. K. 1986. Mating pattern variability among western toad (Bufo boreas) populations. Oecologia 70:351356.CrossRefGoogle ScholarPubMed
PICKETT, S. T. A. & CADENASSO, M. L. 1995. Landscape ecology: spatial heterogeneity in ecological systems. Science 269:331334.CrossRefGoogle Scholar
PRESLEY, S. J. & WILLIG, M. R. 2010. Bat metacommunity structure on Caribbean islands and the role of endemics. Global Ecology and Biogeography 19:185199.CrossRefGoogle Scholar
PRESLEY, S. J., HIGGINS, C. L. & WILLIG, M. R. 2010. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119:908917.CrossRefGoogle Scholar
PRESTON, F. W. 1960. Time and space and the variation of species. Ecology 41:611627.CrossRefGoogle Scholar
PRUGH, L. R., HODGES, K. E., SINCLAIR, A. R. E. & BRASHARES, J. S. 2008. Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National Academy of Sciences USA 105:2077020775.CrossRefGoogle Scholar
RAFFEL, T. R., ROHR, J. R., KIESECKER, J. M. & HUDSON, P. J. 2006. Negative effects of changing temperature on amphibian immunity under field conditions. Functional Ecology 20:819828.CrossRefGoogle Scholar
RESETARITS, W. J., BINCKLEY, C. A. & CHALCRAFT, D. R. 2005. Habitat selection, species interaction and processes of community assembly in complex landscapes. Pp. 374398 in Holyoak, M., Leibold, M. A. & Holt, R. D. (eds.). Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago.Google Scholar
RICHTER-BOIX, A., LLORENTE, G. A. & MONTORI, A. 2006. Breeding phenology of an amphibian community in a Mediterranean area. Amphibia-Reptilia 27:549559.CrossRefGoogle Scholar
RON, S. R., DUELLMAN, W. E., COLOMA, L. A. & BUSTAMANTE, M. R. 2003. Population decline of the Jambato toad Atelopus ignescens (Anura: Bufonidae) in the Andes of Ecuador. Journal of Herpetology 37:116126.CrossRefGoogle Scholar
SALVIDIO, S. 2009. Detecting amphibian population cycles: the importance of appropriate statistical analyses. Biological Conservation 142:455461.CrossRefGoogle Scholar
SANDOVAL-COMTE, A., PINEDA, E. & AGUILAR-LÓPEZ, J. L. 2012. In search of critically endangered species: the current situation of two tiny salamander species in the neotropical mountains of Mexico. PLOS ONE 7:e34023.CrossRefGoogle Scholar
SHAW, P. J. 2003. Multivariate statistics for the environmental sciences. Hodder Arnold, London. 233 pp.Google Scholar
SINSCH, U. 1990. Migration and orientation in anuran amphibians. Ethology, Ecology and Evolution 2:6579.CrossRefGoogle Scholar
SINSCH, U. 1997. Postmetamorphic dispersal and recruitment of first breeders in a Bufo calamita metapopulation. Oecologia 112:4247.CrossRefGoogle Scholar
SMITH, M. A. & GREEN, D. M. 2005. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110128.CrossRefGoogle Scholar
STEBBINS, R. C. & COHEN, N. W. 1997. A natural history of amphibians. Princeton University Press, Princeton. 317 pp.Google Scholar
STEVENS, V. M., POLUS, E., WESSELINGH, R. A., SCHTICKZELLE, N. & BAGUETTE, M. 2004. Quantifying functional connectivity: experimental evidence for patch-specific resistance in the Natterjack toad (Bufo calamita). Landscape Ecology 19:829842.CrossRefGoogle Scholar
STEVENS, V. M., LEBOULENGÉ, E., WESSELINGH, R. A. & BAGUETTE, M. 2006. Quantifying functional connectivity: experimental assessment of boundary permeability for the Natterjack toad (Bufo calamita). Oecologia 150:161171.CrossRefGoogle Scholar
STEWART, M. M. 1995. Climate driven population fluctuations in the rain forest. Journal of Herpetology 29:437446.CrossRefGoogle Scholar
VARUGHESE, M. M. 2011. A framework for modelling ecological communities and their interactions with the environment. Ecological Complexity 8:105112.CrossRefGoogle Scholar
WELLS, K. D. 2007. The ecology and behavior of amphibians. University of Chicago Press, Chicago. 1148 pp.CrossRefGoogle Scholar
WELSH, H. H., HODGSON, G. R. & LIND, A. J. 2005. Ecogeography of the herpetofauna of a northern California watershed: linking species patterns to landscape processes. Ecography 28:521536.CrossRefGoogle Scholar
WERNER, E. E., SKELLY, D. K., RELYEA, R. A. & YUREWICZ, K. L. 2007. Amphibian species richness across environmental gradients. Oikos 116:16971712.CrossRefGoogle Scholar
WHITEMAN, H. H. & WISSINGER, S. A. 2005. Amphibian population cycles and long-term data sets. Pp. 177184 in Lannoo, M. J. (ed.). Conservation and status of North American amphibians. University of California Press, Berkeley.Google Scholar
YACHI, S. & LOREAU, M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences USA 96:14631468.CrossRefGoogle Scholar
6
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spatial and temporal variation in amphibian metacommunity structure in Chiapas, Mexico
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Spatial and temporal variation in amphibian metacommunity structure in Chiapas, Mexico
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Spatial and temporal variation in amphibian metacommunity structure in Chiapas, Mexico
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *