Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-17T20:21:32.931Z Has data issue: false hasContentIssue false

Stem characteristics and ant body size in a Costa Rican rain forest

Published online by Cambridge University Press:  13 February 2012

Stephen P. Yanoviak*
Affiliation:
Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204USA
Cheryl Silveri
Affiliation:
Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701USA
Christopher A. Hamm
Affiliation:
Department of Entomology, Michigan State University, 243 Natural Sciences, East Lansing, Michigan 48864USA Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan 48864USA
Manuel Solis
Affiliation:
Departamento de Entomología, Instituto Nacional de Biodiversidad (INBio), Santo Domingo, Heredia, Costa Rica
*
1Corresponding author. Email: spyanoviak@ualr.edu

Abstract:

Climbing plants provide efficient pathways for ants to access patchy arboreal resources. However, plant stems vary greatly in physical characteristics that are likely to influence ant locomotion. We collected, measured and identified ants foraging on 671 stems of climbing plants at the La Selva Biological Station, Costa Rica. We applied tuna baits to 70% of the observed stems to attract ants to a broad range of stem sizes. We used these data to examine relationships between relative stem roughness, growth form (herbaceous or woody), stem diameter and the body length of foraging ants representing 58 species. The size of the largest ants found on stems generally increased with stem size up to 3.2 mm diameter, whereas the size of the smallest ants present on stems did not vary with stem diameter. The largest ants in the forest (Paraponera clavata) used small stems (<2.7 mm diameter) only when attracted by baits. Average (± SE) ant body length was larger on woody (5.2 ± 0.32 mm) vs. herbaceous (3.3 ± 0.53 mm) stems, but did not differ between rough and smooth stems within these categories. Ant body-size distribution tended toward unimodality on smooth stems. We conclude that small stem diameter acts as a habitat filter based on ant body size, but only for the largest ants in the forest. The filter effect is reduced when ants are attracted to an artificially high quality resource.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ADLER, F. R., LEBRUN, E. G. & FEENER, D. H. 2007. Maintaining diversity in an ant community: modeling, extending, and testing the dominance-discovery trade-off. American Naturalist 169:323333.CrossRefGoogle Scholar
BENTLEY, B. L. 1981. Ants, extrafloral nectaries, and the vine life-form: an interaction. Tropical Ecology 22:127133.Google Scholar
CLAY, N. A., BAUER, M., SOLIS, M. & YANOVIAK, S. P. 2010. Arboreal substrates influence foraging in tropical ants. Ecological Entomology 35:417423.CrossRefGoogle Scholar
CUSHMAN, J. H., LAWTON, J. H. & MANLY, B. F. J. 1993. Latitudinal patterns in European ant assemblages: variation in species richness and body size. Oecologia 95:3037.CrossRefGoogle ScholarPubMed
DAVIDSON, D. W. 1998. Resource discovery versus resource domination in ants: a functional mechanism for breaking the trade-off. Ecological Entomology 23:484490.CrossRefGoogle Scholar
DAVIDSON, D. W., SNELLING, R. R. & LONGINO, J. T. 1989. Competition among ants for myrmecophytes and the significance of plant trichomes. Biotropica 21:6473.CrossRefGoogle Scholar
DAVIDSON, D. W., COOK, S. C. & SNELLING, R. R. 2004. Liquid-feeding performances of ants (Formicidae): ecological and evolutionary implications. Oecologia 139:255266.CrossRefGoogle ScholarPubMed
DUSSUTOUR, A., NICOLIS, S. C., DENEUBOURG, J.-L. & FOURCASSIÉ, V. 2006. Collective decisions in ants when foraging under crowded conditions. Behavioral Ecology and Sociobiology 61:1730.CrossRefGoogle Scholar
EMMONS, L. H. & GENTRY, A. H. 1983. Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates. American Naturalist 121:513524.CrossRefGoogle Scholar
FARJI-BRENER, A. G., BARRANTES, G. & RUGGIERO, A. 2004. Environmental rugosity, body size and access to food: a test of the size-grain hypothesis in tropical litter ants. Oikos 104:165171.CrossRefGoogle Scholar
FARJI-BRENER, A. G., BARRANTES, G., LAVERDE, O., FIERRO-CALDERÓN, K., BASCOPÉ, F. & LÓPEZ, A. 2007. Fallen branches as part of leaf cutting ant trails: their role in resource discovery and leaf transport rates in Atta cephalotes. Biotropica 39:211215.CrossRefGoogle Scholar
FEWELL, J. H. 1988. Energetic and time costs of foraging in harvester ants, Pogonomyrmex occidentalis. Behavioral Ecology and Sociobiology 22:401408.CrossRefGoogle Scholar
GARCÍA, D., ZAMORA, R. & AMICO, G. C. 2011. The spatial scale of plant–animal interactions: effects of resource availability and habitat structure. Ecological Monographs 81:102121.CrossRefGoogle Scholar
GENTRY, A. H. 1991. The distribution and evolution of climbing plants. Pp. 349 in Putz, F. E. & Mooney, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
HÖLLDOBLER, B. & WILSON, E. O. 1990. The ants. Harvard University Press, Cambridge. 732 pp.CrossRefGoogle Scholar
KASPARI, M. & WEISER, M. D. 1999. The size-grain hypothesis and interspecific scaling in ants. Functional Ecology 13:530538.CrossRefGoogle Scholar
KÖRNER, C. 2009. Responses of humid tropical trees to rising CO2. Annual Review of Ecology, Evolution, and Systematics 40: 6179.CrossRefGoogle Scholar
MACARTHUR, R. H. & MACARTHUR, J. W. 1961. On bird species diversity. Ecology 42:594598.CrossRefGoogle Scholar
MCDADE, L. A., BAWA, K. S., HESPENHEIDE, H. A. & HARTSHORN, G. S. (eds.) 1994. La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago. 493 pp.Google Scholar
MOREAU, C. S., BELL, C. D., VILA, R., ARCHIBALD, S. B. & PIERCE, N. E. 2006. Phylogeny of the ants: diversification in the age of angiosperms. Science 312:101104.CrossRefGoogle ScholarPubMed
MORSE, D. R., LAWTON, J. H., DODSON, M. M. & WILLIAMSON, M. H. 1985. Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 314:731733.CrossRefGoogle Scholar
NG, F. S. P. 1977. Shyness in trees. Nature Malaysiana 2:3537.Google Scholar
PHILLIPS, O. L., VÁSQUEZ MARTÍNEZ, R., ARROYO, L., BAKER, T. R., KILLEEN, T., LEWIS, S. L., MALHI, Y., MENDOZA, A. M., NEILL, D., VARGAS, P. N., ALEXIADES, M., CERÓN, C., DI FIORE, A., ERWIN, T., JARDIM, A., PALACIOS, W., SALDIAS, M. & VINCETI, B. 2002. Increasing dominance of large lianas in Amazonian forests. Nature 418:770774.CrossRefGoogle ScholarPubMed
PUTZ, F. E. 1984. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:17131724.CrossRefGoogle Scholar
REINHARDT, L., WEIHMANN, T. & BLICKHAN, R. 2009. Dynamics and kinematics of ant locomotion: do wood ants climb on level surfaces? Journal of Experimental Biology 212:24262435.CrossRefGoogle ScholarPubMed
RICO-GRAY, V. & OLIVEIRA, P. S. 2007. The ecology and evolution of ant–plant interactions. University of Chicago Press, Chicago. 320 pp.CrossRefGoogle Scholar
SARTY, M., ABBOTT, K. L. & LESTER, P. J. 2006. Habitat complexity facilitates coexistence in a tropical ant community. Oecologia 149:465473.CrossRefGoogle Scholar
SCHNITZER, S. A. & BONGERS, F. 2002. The ecology of lianas and their role in forests. Trends in Ecology and Evolution 17:223230.CrossRefGoogle Scholar
SINERVO, B. & LOSOS, J. B. 1991. Walking the tight rope: arboreal sprint performance among Sceloporus occidentalis lizard populations. Ecology 72:12251233.CrossRefGoogle Scholar
SOKAL, R. R. & ROHLF, F. J. 1995. Biometry. (Third edition). W. H. Freeman & Co., New York. 880 pp.Google Scholar
SOUTHWOOD, T. R. E. 1988. Tactics, strategies and templets. Oikos 52:318.CrossRefGoogle Scholar
SPONBERG, S. & FULL, R. J. 2007. Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain. Journal of Experimental Biology 211:433446.CrossRefGoogle Scholar
TEWS, J., BROSE, U., GRIMM, V., TIELBÖRGER, K., WICHMANN, M. C., SCHWAGER, M. & JELTSCH, F. 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31:7992.CrossRefGoogle Scholar
WRIGHT, S. J., CALDERÓN, O., HERNANDÉZ, A. & PATON, S. 2004. Are lianas increasing in importance in tropical forests? A 17-year record from Panama. Ecology 85:484489.CrossRefGoogle Scholar
YANOVIAK, S. P. & KASPARI, M. 2000. Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos 89:259266.CrossRefGoogle Scholar
YANOVIAK, S. P., MUNK, Y. & DUDLEY, R. 2012. Evolution and ecology of directed aerial descent in arboreal ants. Integrative and Comparative Biology (in press).CrossRefGoogle Scholar
YDENBERG, R. C., WELHAM, C. V. J., SCHMID-HEMPEL, R., SCHMID-HEMPEL, P. & BEAUCHAMP, G. 1994. Time and energy constraints and the relationships between currencies in foraging theory. Behavioral Ecology 5:2834.CrossRefGoogle Scholar