Skip to main content Accessibility help
×
Home

Morphological correlates of fire-induced tree mortality in a central Amazonian forest

  • Jos Barlow (a1), Bernard O. Lagan (a1) and Carlos A. Peres (a1)

Abstract

Tree characteristics were recorded from 2829 standing trees in 24 0.25-ha terra firme forest plots in central Amazonia, 3 y after a surface fire had swept through the study area. Sixteen of the plots were within forest that burnt for the first time at the end of the 1997-98 El Niño (ENSO) event, and the remaining eight plots were within unburnt primary forest. In order to investigate the morphological correlates of tree mortality, we measured tree diameter at breast height (dbh) and bark thickness, and recorded burn height, bark roughness and the presence of latex, resin and buttress roots. Leaf litter depth was also recorded at the base of all trees in the unburnt forest. Using logistic regression models, tree mortality was best explained by the burn height, although dbh and the presence of buttresses were also important. Buttressed trees were associated with deeper leaf litter accumulation at their bases and higher char heights than trees without buttresses. Moreover, trees surviving the fire had significantly thicker bark than living trees in unburnt forest plots, indicating that thin-barked trees are more prone to selective mortality induced by heat stress. Latex did not appear to have had any significant effects on mortality, though resins were less abundant amongst the live trees in the burnt forest than in the unburnt controls. Levels of fire-mediated tree mortality in this study are compared with those in other Amazonian forest regions in light of historical factors affecting tree resistance to fires.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Morphological correlates of fire-induced tree mortality in a central Amazonian forest
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Morphological correlates of fire-induced tree mortality in a central Amazonian forest
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Morphological correlates of fire-induced tree mortality in a central Amazonian forest
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. Email: J.Barlow@uea.ac.uk

Keywords

Morphological correlates of fire-induced tree mortality in a central Amazonian forest

  • Jos Barlow (a1), Bernard O. Lagan (a1) and Carlos A. Peres (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed