Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-gblv7 Total loading time: 0.163 Render date: 2022-05-25T15:47:53.889Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Article contents

Phylogenetic relationships of otters (Carnivora: Mustelidae) based on mitochondrial cytochrome b sequences

Published online by Cambridge University Press:  27 February 2001

K.-P. Koepfli
Affiliation:
Department of Organismic Biology, Ecology and Evolution, University of California, Los Angeles, CA 90095-1606, U.S.A.
R. K. Wayne
Affiliation:
Department of Organismic Biology, Ecology and Evolution, University of California, Los Angeles, CA 90095-1606, U.S.A.
Get access

Abstract

Otters are classified in the Lutrinae and are united by a suite of semi-aquatic adaptations that distinguish them from the rest of the Mustelidae. Past systematic studies have been based primarily on overall similarity of morphological characters but have not been concordant, with regard either to relationships within the subfamily or to the relationships of the Lutrinae to other taxa in the Mustelidae. We evaluate the relationships among nine of the 13 species of otters and their position in the Mustelidae through phylogenetic analysis of the complete nucleotide sequence of the mitochondrial cytochrome b gene. Based on the sequence data presented here, our results suggest that otters are divided into three primary clades that include: (1) the North American river, neotropical and marine otters; (2) the sea, Eurasian, spotted-necked, cape clawless and small-clawed otters; and (3) the giant otter. Furthermore, our results indicate that among sampled mustelid taxa, members of the genus Mustela are most closely related to otters. The hierarchical relationships among clades are not well resolved, particularly the monophyly of otters, largely because a pattern of short internal branches combined with long terminal branches suggests a rapid evolutionary radiation. Estimates of divergence time calibrated by the fossil record suggest that the lineages leading to the North American river, neotropical and marine otters, and the giant otter diverged before the end of the Miocene, much earlier than predicted from the fossil record.

Type
Research Article
Copyright
© 1998 The Zoological Society of London

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Phylogenetic relationships of otters (Carnivora: Mustelidae) based on mitochondrial cytochrome b sequences
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Phylogenetic relationships of otters (Carnivora: Mustelidae) based on mitochondrial cytochrome b sequences
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Phylogenetic relationships of otters (Carnivora: Mustelidae) based on mitochondrial cytochrome b sequences
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *