Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T20:54:03.228Z Has data issue: false hasContentIssue false

Design patterns for modeling first-order expressive Bayesian networks

Published online by Cambridge University Press:  17 June 2020

Mark Locher
Affiliation:
Department of Systems Engineering and Operations Research, George Mason University, 4400 University Dr, Fairfax, VA, USA, e-mails: mlocher@masonlive.gmu.edu, klaskey@gmu.edu, pcosta@gmu.edu
Kathryn B. Laskey
Affiliation:
Department of Systems Engineering and Operations Research, George Mason University, 4400 University Dr, Fairfax, VA, USA, e-mails: mlocher@masonlive.gmu.edu, klaskey@gmu.edu, pcosta@gmu.edu
Paulo C. G. Costa
Affiliation:
Department of Systems Engineering and Operations Research, George Mason University, 4400 University Dr, Fairfax, VA, USA, e-mails: mlocher@masonlive.gmu.edu, klaskey@gmu.edu, pcosta@gmu.edu

Abstract

First-order expressive capabilities allow Bayesian networks (BNs) to model problem domains where the number of entities, their attributes, and their relationships can vary significantly between model instantiations. First-order BNs are well-suited for capturing knowledge representation dependencies, but literature on design patterns specific to first-order BNs is few and scattered. To identify useful patterns, we investigated the range of dependency models between combinations of random variables (RVs) that represent unary attributes, functional relationships, and binary predicate relationships. We found eight major patterns, grouped into three categories, that cover a significant number of first-order BN situations. Selection behavior occurs in six patterns, where a relationship/attribute identifies which entities in a second relationship/attribute are applicable. In other cases, certain kinds of embedded dependencies based on semantic meaning are exploited. A significant contribution of our patterns is that they describe various behaviors used to establish the RV’s local probability distribution. Taken together, the patterns form a modeling framework that provides significant insight into first-order expressive BNs and can reduce efforts in developing such models. To the best of our knowledge, there are no comprehensive published accounts of such patterns.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almond, R. G., Mulder, J., Hemat, L. A. & Yan, D. 2009. Bayesian network models for local dependence among observable outcome variables. Journal of Educational and Behavioral Statistics 34(4), 491521.CrossRefGoogle Scholar
Al-Rousan, T., Sulaiman, S. & Salam, R. A. 2009. Project management using Risk Identification Architecture Pattern (RIAP) Model: A Case Study on a Web-Based Application. In Proceedings of the 16th Asia-Pacific Software Engineering Conference, 449–56. IEEE.CrossRefGoogle Scholar
Anand, V. & Downs, S. M. 2008. Probabilistic Asthma case finding: A noisy or reformulation. In AMIA Annual Symposium Proceedings, 2008:6. American Medical Informatics Association.Google Scholar
Baader, F., McGuinness, D. L., Nardi, D. & Patel-Schneider, P. F. (eds). 2003. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge, UK: Cambridge university press.Google Scholar
Bermejo, I., Díez, F. J., Govaerts, P. & Vaerenberg, B. 2013. A probabilistic graphical model for tuning cochlear implants. In Conference on Artificial Intelligence in Medicine in Europe, 150–155. Springer.CrossRefGoogle Scholar
Brachman, R. J. & Levesque, H. J. 2004. Knowledge Representation and Reasoning. Amsterdam; Boston: Morgan Kaufmann.Google Scholar
Carvalho, R. N., Laskey, K. B. & Coasta, P. C. G. 2017. PR-OWL– A language for defining probabilistic ontologies. International Journal of Approximate Reasoning 91, 5679.CrossRefGoogle Scholar
Consortium, World Wide Web. 2012. OWL 2 Web ontology language document overview.Google Scholar
Costa, P. C. G. & Laskey, K. B. 2005. Multi-entity Bayesian networks without multi-tears. The Volgenau School of Information Technology and Engineering, George Mason University. Fairfax, VA, USA.Google Scholar
Costa, P. C. G. 2005. Bayesian Semantics for the Semantic Web. PH.D dissertation--George Mason University. Fairfax, VA, USA.Google Scholar
Dıez, F. J. & Druzdzel, M. J. 2006. Canonical Probabilistic Models for Knowledge Engineering. CISIAD-06-01. Madrid, Spain: UNED.Google Scholar
Domingos, P. & Lowd, D. 2009. Markov Logic: An Interface Layer for Artificial Intelligence. London UK: Morgan & Claypool.Google Scholar
Fenton, N., Neil, M. & Lagnado, D. A. 2013. A general structure for legal arguments about evidence using Bayesian networks. Cognitive Science 37(1), 61102.CrossRefGoogle ScholarPubMed
Fenton, N., Neil, M., Lagnado, D., Marsh, W., Yet, B. & Constantinou, A. 2016. How to model mutually exclusive events based on independent causal pathways in Bayesian network Models. Knowledge-Based Systems 113, 3950.CrossRefGoogle Scholar
Gerven, M. A. J., van Lucas, P. J. F. & van der Weide, T. P. 2008. A generic qualitative characterization of independence of causal influence. International Journal of Approximate Reasoning 48(1), 214236.CrossRefGoogle Scholar
Getoor, L., Friedman, N., Koller, D., Pfeffer, A. & Taskar, B. 2007. Probabilistic relational models. In Introduction to Relational Statistical Models, Getoor, L. & Taskar, B. (eds). Cambridge, MA, USA: The MIT Press.CrossRefGoogle Scholar
Getoor, L. & Grant, J. 2006. PRL: A probabilistic relational language. Machine Learning 62(1), 731.CrossRefGoogle Scholar
Golestan, K., Soua, R., Karray, F. & Kamel, M. S. 2016. Situation awareness within the context of connected cars: A comprehensive review and recent trends. Information Fusion 29, 6883.CrossRefGoogle Scholar
Gruber, T. 2009. Ontology. In Encyclopedia of Database Systems, Lui, L. & Ozsu, M. T. (eds). New York, NY, USA: Springer, 19631965.CrossRefGoogle Scholar
Heckerman, D., Meek, C. & Koller, D. 2007. Probabilistic Entity-Relationship Models, PRMs, and Plate Models. In Introduction to Statistical Relational Learning, Getoor, L., Taskar, B. (Eds.). Cambridge, MA, USA: The MIT Press., 201238.Google Scholar
Helsper, E. M. & van der Gaag, L. C.. 2005. Generic knowledge structures for probabilistic-network engineering. UU-CS-2005-014. Utrecht, The Netherlands: Institute of Information and Computing Sciences, Utrecht University.Google Scholar
Howard, C. 2010. Knowledge Representation and Reasoning for a Model-Based Approach to Higher Level Information Fusion. Ph.D dissertation, School of Computer and Information Science, University of South Australia, AustraliaGoogle Scholar
Howard, C. & Stumptner, M. 2014. A survey of directed entity-relation–based first-order probabilistic languages. ACM Computing Surveys (CSUR) 47(1), 4.CrossRefGoogle Scholar
Jensen, F. V. & Nielsen, T. D. 2007. Bayesian Networks and Decision Graphs. 2nd ed. New York: Springer.CrossRefGoogle Scholar
Kazemi, S. M., Buchman, D., Kersting, K., Natarajan, S. & Poole, D. 2014. Relational logistic regression. Fourteenth International Conference on the Principles of Knowledge Representation and Reasoning.Google Scholar
Kazemi, S. M., Fatemi, B., Kim, A., Peng, Z., Tora, M. R., Zeng, X., Dirks, M. & Poole, D. 2017. Comparing aggregators for relational probabilistic models. In ArXiv:1707.07785[Cs, Stat]. Seventh International Workshop on Statistical Relational AI. Sydney, Australia.Google Scholar
Kersting, K. 2012. Lifted probabilistic inference. In ECAI, 33–38.Google Scholar
Kimmig, A., Mihalkova, L. & Getoor, L. 2015. Lifted graphical models: A survey. Machine Learning 99(1), 145.CrossRefGoogle Scholar
Kjaerulff, U. B. & Anders, L. M. 2013. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis. New York, NY: Springer.Google Scholar
Koller, D. & Friedman, N. 2009. Probabilistic Graphical Models: Principles and Techniques. Cambridge, MA, USA: MIT press.Google Scholar
Koller, D., Levy, A. & Pfeffer, A. 1997. P-CLASSIC: A tractable probabilistic description logic. AAAI/IAAI 1997, 390397.Google Scholar
Koller, D. & Pfeffer, A. 1997. Object-oriented Bayesian networks. In Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, 302–13. Providence, Rhode Island, USA.Google Scholar
Laskey, K. B. 2008. MEBN: A language for first-order Bayesian knowledge bases. Artificial Intelligence 172(2), 140178.CrossRefGoogle Scholar
Lucas, P. J. F. 2005. Bayesian network modelling through qualitative patterns. Artificial Intelligence 163(2), 233263.CrossRefGoogle Scholar
Lukasiewicz, T. 2008. Expressive probabilistic description logics. Artificial Intelligence 172(6), 852883.CrossRefGoogle Scholar
Magrini, A., Luciani, D. & Stefanini, F. M. 2016. A Generalization of the Noisy-MAX Parameterization for Biomedical Applications. DISIA Working Paper 2016/06, University of Florence, Italy.Google Scholar
Mahoney, S. M. & Laskey, K. B. 1998. Constructing situation specific belief networks. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI1998).Google Scholar
Matsumoto, S., Carvalho, R. N., Costa, P. C. G., Laskey, K. B., Santos, L. L. D. & Ladeira, M. 2011. There’s no more need to be a Night OWL: On the PR-OWL for a MEBN tool before nightfall. In Introduction to the Semantic Web: Concepts, Technologies and Applications, Fung, G. P. C. (ed). Hong Kong: iConcept Press.Google Scholar
Matsumoto, S., Carvalho, R. N., Ladeira, M., da Costa, P. C. G., Santos, L. L., Silva, D., Onishi, M. & Machado, E. 2011. UnBBayes: a java framework for probabilistic models in AI, in Java in Academia and Research, Cai, K. (Ed.), Hong Kong: IConceptPress.Google Scholar
McGuinness, D. L. & Van Harmelen, D., (eds). 2004. OWL web ontology language overview. W3C Recommendation 10(10), 2004.Google Scholar
Medina-Oliva, G., Weber, P. & Iung, B. 2013. PRM-based patterns for knowledge formalisation of industrial systems to support maintenance strategies assessment. Reliability Engineering & System Safety 116, 3856.CrossRefGoogle Scholar
Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D. L. & Kolobov, A. 2007. BLOG: Probabilistic models with unknown objects. In Statistical Relational Learning, edited by Lisa Getoor and Ben Taskar, 373.Google Scholar
Milch, B. & Russell, S. 2010. Extending Bayesian networks to the open-universe case. In Heuristics, Probability and Causality: A Tribute to Judea Pearl, Dechter, R., Geffner, H. & Halpern, J. (eds). London, UK: College Publications.Google Scholar
Neil, M., Fenton, N. & Nielson, L. 2000. Building large-scale Bayesian networks. The Knowledge Engineering Review 15(3), 257284.CrossRefGoogle Scholar
Olesen, K. G., Kjaerulff, U., Jensen, F., Jensen, F. V., Falck, B., Andreassen, S. & Andersen, S. K. 1989. A munin network for the median nerve - A case study on loops. Applied Artificial Intelligence an International Journal 3(2–3), 385403.CrossRefGoogle Scholar
Park, C. Y., Laskey, K. B., Costa, P. C.G. & Matsumoto, S. 2014. Predictive situation awareness reference model using multi-entity Bayesian networks. In Information Fusion (FUSION), 2014 17th International Conference On, 1–8. IEEE.Google Scholar
Pasula, H. M. 2003. Identity uncertainty. Ph.D dissertation. University of California, Berkeley. Berkeley CA USA.Google Scholar
Pearl, J. 1988. Probabilistic Reasoning in Intelligence Systems. San Mateo, CA: Morgan Kaufman.Google Scholar
Pfeffer, A. J. 1999. Probabilistic Reasoning for Complex Systems. Ph.D Thesis, Stanford CA, USA: Stanford University.Google Scholar
Poole, D. 1997. The independent choice logic for modelling multiple agents under uncertainty. Artificial Intelligence 94(1), 756.CrossRefGoogle Scholar
Poole, D. 2008. The Independent Choice Logic and Beyond. In Probabilistic Inductive Logic Programming, 222–243. Springer.CrossRefGoogle Scholar
Poole, D. 2011. Logic, probability and computation: Foundations and issues of statistical relational AI. In International Conference on Logic Programming and Nonmonotonic Reasoning, 1–9. Springer.CrossRefGoogle Scholar
Raedt, L. D., Kersting, K., Natarajan, S. & Poole, D. 2016. Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Vol. 10. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool.CrossRefGoogle Scholar
Renooij, S. & van der Gaag, L. C.. 2002. From qualitative to quantitative probabilistic networks. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, 422–429. Morgan Kaufmann Publishers Inc.Google Scholar
Richardson, M. & Domingos, P. 2006. Markov logic networks. Machine Learning 62(1), 107136.CrossRefGoogle Scholar
Russell, S. 2015. Unifying logic and probability. Communications of the ACM 58(7), 8897.CrossRefGoogle Scholar
Schum, D. A. 1994. The Evidential Foundations of Probabilistic Reasoning. Evanston, IL, USA: Northwestern University Press.Google Scholar
Shpitser, I. 2010. Disease models, part I: Graphical models. In Medical Imaging Informatics, Bui, A., Taira, R. (Eds.). 335–369. Boston, MA, USA: Springer.CrossRefGoogle Scholar
Vlek, C. S., Prakken, H., Renooij, S. & Verheij, B. 2014. Building Bayesian networks for legal evidence with narratives: A case study evaluation. Artificial Intelligence and Law 22(4), 375421.CrossRefGoogle Scholar
Wellman, M. P. 1990. Fundamental concepts of qualitative probabilistic networks. Artificial Intelligence 44(3), 257303.CrossRefGoogle Scholar
Woudenberg, S. P. D., van der Gaag, L. C. & Rademaker, C. M. A. 2015. An intercausal cancellation model for Bayesian-network engineering. International Journal of Approximate Reasoning 63, 3247.CrossRefGoogle Scholar
Yet, B., Constantinou, A., Fenton, N., Neil, M., Luedeling, E. & Shepherd, K. 2016. A Bayesian network framework for project cost, benefit and risk analysis with an agricultural development case study. Expert Systems with Applications 60, 141155.CrossRefGoogle Scholar