Skip to main content Accessibility help
×
Home

A review and comparison of ontology-based approaches to robot autonomy

  • Alberto Olivares-Alarcos (a1), Daniel Beßler (a2), Alaa Khamis (a3), Paulo Goncalves (a4), Maki K. Habib (a5), Julita Bermejo-Alonso (a6), Marcos Barreto (a7), Mohammed Diab (a8), Jan Rosell (a8), João Quintas (a9), Joanna Olszewska (a10), Hirenkumar Nakawala (a11), Edison Pignaton (a12), Amelie Gyrard (a13), Stefano Borgo (a14), Guillem Alenyà (a1), Michael Beetz (a2) and Howard Li (a15)...

Abstract

Within the next decades, robots will need to be able to execute a large variety of tasks autonomously in a large variety of environments. To relax the resulting programming effort, a knowledge-enabled approach to robot programming can be adopted to organize information in re-usable knowledge pieces. However, for the ease of reuse, there needs to be an agreement on the meaning of terms. A common approach is to represent these terms using ontology languages that conceptualize the respective domain. In this work, we will review projects that use ontologies to support robot autonomy. We will systematically search for projects that fulfill a set of inclusion criteria and compare them with each other with respect to the scope of their ontology, what types of cognitive capabilities are supported by the use of ontologies, and which is their application domain.

Copyright

Footnotes

Hide All
*

Both authors contributed equally to this manuscript

Footnotes

References

Hide All
Arp, R., Smith, B. & Spear, A. D. 2015. Building Ontologies with Basic Formal Ontology. MIT Press.
Balakirsky, S.et al. 2017. Towards a robot task ontology standard. In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, V003T04A049–V003T04A049.
Bateman, J.et al. 2017. Heterogeneous ontologies and hybrid reasoning for service robotics: the EASE framework. In Third Iberian Robotics Conference, ROBOT ’17. Sevilla, Spain.
Beer, J. M., Fisk, A. D. & Rogers, W. A. 2014. Toward a framework for levels of robot autonomy in human-robot interaction. Journal of Human-Robot Interaction 3(2), 7499.
Beetz, M., Balint-Benczedi, F.et al. 2015a. RoboSherlock: Unstructured information processing for robot perception. In 2015 IEEE International Conference on Robotics and Automation (ICRA), 1549–1556.
Beetz, M., Bartels, G.et al. 2015b. Robotic agents capable of natural and safe physical interaction with human co-workers. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany.
Beetz, M., Tenorth, M. & Winkler, J. 2015c. Open-EASE – A knowledge processing service for robots and robotics/AI researchers. In IEEE International Conference on Robotics and Automation (ICRA). Finalist for the Best Cognitive Robotics Paper Award, Seattle, Washington, USA.
Beetz, M., Beßler, D., Haidu, A.et al. 2018. KnowRob 2.0–A 2nd Generation knowledge processing framework for cognition-enabled robotic agents. In International Conference on Robotics and Automation (ICRA).
Beetz, M., Beßler, D., Winkler, J.et al. 2016. Open robotics research using web-based knowledge services. In International Conference on Robotics and Automation (ICRA), Stockholm, Sweden.
Beetz, M., Jain, D.et al. 2012. Cognition-enabled autonomous robot control for the realization of home chore task intelligence. Proceedings of the IEEE 100(8), 24542471.
Beetz, M., Möosenlechner, L. & Tenorth, M. 2010. CRAM – A cognitive robot abstract machine for everyday manipulation in human environments. In IROS. IEEE, 1012–1017.
Beßler, D., Pomarlan, M. & Beetz, M. 2018. OWL-enabled assembly planning for robotic agents. In Proceedings of the 2018 International Conference on Autonomous Agents, AAMAS 2018. Finalist for the Best Robotics Paper Award, Stockholm, Sweden.
Beßler, D., Porzel, R.et al. 2019. Foundational models for manipulation activity parsing. In Proceedings of AR and VR Conference: Changing Realities in a Dynamic World. Timothy, J., Dieck, T., Rauschnabel, M. C. & Philipp, A. (eds). Springer.
Borgo, S., Cesta, A.et al. 2019. Knowledge-based adaptive agents for manufacturing domains. Engineering with Computers. 35(3), 755779.
Borgo, S., Franssen, M.et al. 2014. Technical artifacts: An integrated perspective. Applied Ontology 9(3–4), 217235.
Borst, P., Akkermans, H. & Top, J. 1997. Engineering ontologies. International Journal of Human-Computer Studies 46, 365406.
Brooks, R. 1991. Intelligence without representation. Artificial Intelligence 47, 139159.
Bruno, B., Young Chong, N.et al. 2017a. Paving the way for culturally competent robots: A position paper. In 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE, 553–560.
Bruno, B., Young Chong, N.et al. 2017b. The CARESSES EU-Japan project: Making assistive robots culturally competent. In Italian Forum of Ambient Assisted Living. Springer, 151169.
Bruno, B., Menicatti, R.et al. 2018. Culturally-competent human-robot verbal interaction. In 2018 15th International Conference on Ubiquitous Robots (UR). IEEE, 388–395.
Bruno, B., Tommaso Recchiuto, C.et al. 2019. Knowledge representation for culturally competent personal robots: Requirements, design principles, implementation, and assessment. International Journal of Social Robotics 11(3), 515538.
Buehler, J. E. & Pagnucco, M. 2014. A framework for task planning in heterogeneous multi robot systems based on robot capabilities. In AAAI. AAAI Press, 2527–2533.
Chandrasekaran, B., Josephson, J. R. & Richard Benjamins, V. 1998. Ontology of tasks and methods. In 11th Workshop on Knowledge Acquisition, Modeling and Management (KAW 1998), Banff, Canada.
Chella, A.et al. 2002. Modeling ontologies for robotic environments. In Proceedings of the 14th International Conference on Software Engineering and Knowledge Engineering, SEKE 2002, Ischia, Italy: ACM, 77–80.
Compton, M.et al. 2012. The SSN ontology of the W3C semantic sensor network incubator group. In Web Semantics: Science, Services and Agents on the World Wide Web 17, 25–32.
Davidson, D. 2001. Essays on Actions and Events: Philosophical Essays. Vol. 1. Oxford University Press on Demand.
Diab, M., Akbari, A., Rosell, J.et al. 2017. An ontology framework for physics-based manipulation planning. In Iberian Robotics Conference. Springer.
Diab, M., Akbari, A., Ud Din, M.et al. 2019. PMK–A knowledge processing framework for autonomous robotics perception and manipulation. Sensors 19(5).
Dix, A. 2009. Human-Computer Interaction. Springer.
Dogmus, Z., Erdem, E. & Patoglu, V. 2015. RehabRobo-Onto: Design, development and maintenance of a rehabilitation robotics ontology on the cloud. In: Robotics and Computer-Integrated Manufacturing 33. Special Issue on Knowledge Driven Robotics and Manufacturing, 100–109.
Dogmus, Z., Erdem, E. & Patoglu, V. 2019. RehabRobo-Query: Answering natural language queries about rehabilitation robotics ontology on the cloud. Semantic Web 103, 605629.
Fazel-Zarandi, M. & Fox, M. S. 2013. Inferring and validating skills and competencies over time. Applied Ontology 8(3), 131177.
Gangemi, A., Borgo, S.et al. 2004. Task Taxonomies for Knowledge Content D07. Technical report Metokis Project.
Gangemi, A. & Mika, P. 2003. Understanding the semantic web through descriptions and situations. In OTM Confederated International Conferences ‘On the Move to Meaningful Internet Systems’. Springer, 689–706.
Gibson, J. J. 1979. The Ecological Approach to Visual Perception. Houghton Miffin.
Gil, Y. 2005. Description logics and planning. AI Magazine 26(2), 7384.
Góomez-Pérez, A., Fernández-López, M. & Corcho, O. 2004. Ontological Engineering with examples from the areas of Knowledge Management, e-Commerce and the Semantic Web. In 1st. Advanced Information and Knowledge Processing. Springer.
Gonçalves, P. J. S. & Torres, P. M. B. 2015. Knowledge representation applied to robotic orthopedic surgery. Robotics and Computer-Integrated Manufacturing 33, 9099.
Gruber, T. 1993. A translation approach to portable ontologies. Knowledge Acquisition 5(2), 199220.
Grüninger, M. 2004. Ontology of the process specification language. In Handbook on Ontologies. Springer, 575–592.
Guarino, N. 1998. Formal ontology in information systems. In Proceedings of FOIS 1998, Trento, Italy: IOS Press, Amsterdam, 3–15.
Guarino, N. & Giaretta, P. 1995. Ontologies and knowledge bases: Towards a terminological clarification. In Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing (KBKS 1995) Mars, N. (ed). University of Twente, Enschede, The Netherlands and IOS Press, Amsterdam, The Netherlands, 2532.
Guarino, N., Oberle, D. & Staab, S. 2009. What is an ontology? In Handbook on Ontologies. Springer, 1–17.
Haage, M.et al. 2011. Declarative-knowledge-based reconfiguration of automation systems using a blackboard architecture. In Eleventh Scandinavian Conference on Artificial Intelligence, Vol. 227. IOS Press, 163–172.
Haidu, A.et al. 2018. KNOWROB-SIM – Game engine-enabled knowledge processing for cognition-enabled robot control. In International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain: IEEE.
Hesslow, G. 2012. The current status of the simulation theory of cognition. Brain Research 1428, 7179.
Jacobsson, L., Malec, J. & Nilsson, K. 2016. Modularization of skill ontologies for industrial robots. In Proceedings of ISR 2016: 47st International Symposium on Robotics. VDE, 1–6.
Jorge, V. A. M.et al. 2015. Exploring the IEEE ontology for robotics and automation for heterogeneous agent interaction. Robotics and Computer-Integrated Manufacturing 33, 1220.
Khaliq, A. A.et al. 2018. Culturally aware planning and execution of robot actions. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 326–332.
Krüger, V.et al. 2007. The meaning of action: A review on action recognition and mapping [English]. Advanced Robotics 21(13), 14731501.
Kunze, L., Roehm, T. & Beetz, M. 2011. Towards semantic robot description languages. In IEEE International Conference on Robotics and Automation (ICRA). Shanghai, China, 5589–5595.
Langley, P., Laird, J. E. & Rogers, S. 2009. Cognitive architectures: Research issues and challenges. Cognitive Systems Research 10(2), 141160.
Lemaignan, S., Ros, R., Alami, R.et al. 2011. What are you talking about? Grounding dialogue in a perspective-aware robotic architecture. In 2011 RO-MAN. IEEE, 107–112.
Lemaignan, S., Ros, R., Mösenlechner, L.et al. 2010. ORO, a knowledge management platform for cognitive architectures in robotics. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 3548–3553.
Lenat, D. B. & Guha, R. V. 1990. Building Large Knowledge-Based System: Representation and Inference in the Cyc Project. New York: Addison-Wesley.
Lim, G. H. 2019. Shared representations of actions for alternative suggestion with incomplete information. Robotics and Autonomous Systems. 116, 3850
Lim, G. H., Suh, I. H. & Suh, H. 2010. Ontology-based unified robot knowledge for service robots in indoor environments. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 41(3), 492509.
Lim, G. H., Suh, I. H. & Suh, H. (2011). Ontology-based unified robot knowledge for service robots in indoor environments. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans 41(3), 492509.
Marconi, L.et al. 2012. The SHERPA project: Smart collaboration between humans and ground-aerial robots for improving rescuing activities in alpine environments. In IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), College Station, Texas, USA.
Masolo, C. & Borgo, S. 2005. Qualities in formal ontology. In: Foundational Aspects of Ontologies (FOnt 2005) Workshop at KI 2005, 2–16.
Masolo, C.et al. 2003. WonderWeb Deliverable D18: Ontology Library. Technical Report. Laboratory for Applied Ontology-ISTC-CNR.
McDermott, D.et al. 1998. PDDL–The Planning Domain Definition Language. Technical Report CVC TR98003/DCS TR1165. New Haven, CT: Yale Center for Computational Vision and Control.
Menicatti, R., Bruno, B. & Sgorbissa, A. 2017. Modelling the influence of cultural information on vision-based human home activity recognition. In 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 32–38.
Mizoguchi, R., Kitamura, Y. & Borgo, S. 2016. A unifying definition for artifact and biological functions. Applied Ontology 11(2), 129154.
Moralez, L. A. 2016. Affordance ontology: Towards a unified description of affordances as events. Res Cogitans 07, 3545.
Neuhaus, F., Grenon, P. & Smith, B. 2004. A formal theory of substances, qualities, and universals. In: Formal Ontology in Information Systems: Proceedings of the Third International Conference (FOIS-2004). IOS Press.
Niles, I. & Pease, A. 2001a. Towards a standard upper ontology. In Proceedings of the International Conference on Formal Ontology in Information Systems-Volume. ACM.
Norman, D. A. 2002. The Design of Everyday Things. New York, NY, USA: Basic Books, Inc.
Ortmann, J. & Kuhn, W. 2010. Affordances as qualities. In Proceedings of the 2010 Conference on Formal Ontology in Information Systems: Proceedings of the Sixth International Conference (FOIS 2010). Amsterdam, The Netherlands, The Netherlands: IOS Press, 117–130.
Oxford-University Press 2019. Compact Oxford English Dictionary of Current English. http://www.askoxford.com.
Papadimitriou, C. H. 2003. Computational Complexity. John Wiley and Sons Ltd.
Paulius, D. & Sun, Y. 2018. A survey of knowledge representation and retrieval for learning in service robotics. CoRR abs/1807.02192.
Persson, J.et al. 2010. A knowledge integration framework for robotics. In ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics). VDE, 1–8.
Perzylo, A., Grothoff, J., et al. 2019a. Capability-based semantic interoperability of manufacturing resources: A BaSys 4.0 perspective. In Proceedings of the IFAC Conference on Manufacturing Modeling, Management, and Control (MIM), Berlin, Germany.
Perzylo, A., Rickert, M.et al. 2019b. SMErobotics: Smart robots for flexible manufacturing. IEEE Robotics and Automation Magazine. 26(1), 7890.
Riva, G. & Riva, E. 2019. SARAFun: Interactive robots meet manufacturing industry. Cyberpsychology, Behavior, and Social Networking 22(4), 295296.
Robot and Robotics Devices – Vocabulary (2012). Standard. International Organization for Standardization.
Ros, R.et al. 2010. Which one? Grounding the referent based on effcient human-robot interaction. In 19th International Symposium in Robot and Human Interactive Communication. IEEE, 570–575.
Rusu, R. B.et al. 2009. Model-based and learned semantic object labeling in 3D point cloud maps of kitchen environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, MO, USA.
Salustri, F. A. 2000. Ontological commitments in knowledge-based design software: A progress report. In Knowledge Intensive Computer Aided Design: IFIP TC5 WG5.2 Third Workshop on Knowledge Intensive CAD December 1–4, 1998, Tokyo, Japan . Finger, S., Tomiyama, T. & Mäntylä, M. (eds). Boston, MA: Springer US, 4172.
Saxena, A.et al. 2014. Robobrain: Large-scale knowledge engine for robots. arXiv preprint arXiv:1412.0691.
Schlenoff, C.et al. 2012. An IEEE standard ontology for robotics and automation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
Sgorbissa, A.et al. 2018. Encoding guidelines for a culturally competent robot for elderly care. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 1988–1995.
Sirin, E.et al. 2007. Pellet: A practical OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 5153.
Sisbot, E. A., Ros, R. & Alami, R. 2011. Situation assessment for human-robot interactive object manipulation. In 2011 RO-MAN. IEEE, 15–20.
Stenmark, M., Haage, M.et al. 2018. Supporting semantic capture during kinesthetic teaching of collaborative industrial robots. International Journal of Semantic Computing 12(01), 167186.
Stenmark, M. & Malec, J. 2013. Knowledge-based industrial robotics. In SCAI, 265–274.
Stenmark, M,.Malec, J. & Stolt, A. 2015. From high-level task descriptions to executable robot code. In Intelligent Systems’ 2014. Springer, 189–202.
Studer, R., Benjamins, V. R. & Fensel, D. 1998. Knowledge engineering: Principles and methods. IEEE Transactions on Data and Knowledge Engineering 25(1–2), 161197.
Suh, I. H.et al. 2007. Ontology-based multi-layered robot knowledge framework (OMRKF) for robot intelligence. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 429–436.
Tenorth, M., Bartels, G. & Beetz, M. 2014. Knowledge-based specification of robot motions. In Proceedings of the European Conference on Artificial Intelligence (ECAI).
Tenorth, M. & Beetz, M. 2009. KnowRob – Knowledge processing for autonomous personal robots. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 4261–4266.
Tenorth, M. & Beetz, M. 2012. A unified representation for reasoning about robot actions, processes, and their effects on objects. In IROS. IEEE, 1351–1358.
Tenorth, M. & Beetz, M. 2013. KnowRob: A knowledge processing infrastructure for cognition-enabled robots. The International Journal of Robotics Research. 32(5), 566590.
Tenorth, M. & Beetz, M. 2017. Representations for robot knowledge in the KnowRob framework. Artificial Intelligence. 247, 151169.
Tenorth, M., Kunze, L.et al. 2010a. KNOWROB-MAP – Knowledge-linked semantic object maps. In 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 430–435.
Tenorth, M., Nyga, D. & Beetz, M. 2010b. Understanding and executing instructions for everyday manipulation tasks from the World Wide Web. In IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 1486–1491.
Thosar, M.et al. 2018. A review of knowledge bases for service robots in household environments. In 6th International Workshop on Artificial Intelligence and Cognition.
Tiddi, I.et al. 2017. An ontology-based approach to improve the accessibility of ROS-based robotic systems. In Proceedings of the Knowledge Capture Conference,. K-CAP 2017, Austin, TX, USA: ACM, 13:1–13:8.
Topp, E. A. & Malec, J. 2018. A knowledge based approach to user support for robot programming. In AI for Multimodal Human Robot Interaction Workshop within the Federated AI Meeting 2018 in Stockholm, 31–34.
Topp, E. A.et al. 2018. Ontology-based knowledge representation for increased skill reusability in industrial robots. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 5672–5678.
Torres, P., Gonçalves, P. J. S. & Martins, J. 2015. Robotic motion compensation for bone movement, using ultrasound images. Industrial Robot: An International Journal 42(5), 466474.
Turvey, M. T. 1992. Affordances and prospective control: An outline of the ontology. Ecological Psychology 4(3), 173187.
Uschold, M. & Gruninger, M. 1996. Ontologies: Principles, methods and applications. Knowledge Engineering Review 11(2), 93155.
Uschold, M.et al. 1998. The enterprise ontology. The Knowledge Engineering Review 13(1), 3189.
Vernon, D. 2014. Artificial Cognitive Systems: A Primer. MIT Press.
Vernon, D., Metta, G. & Sandini, G. 2007. A survey of artificial cognitive systems: Implications for the autonomous development of mental capabilities in computational agents. IEEE Transactions on Evolutionary Computation 11(2), 151180.
Waibel, M.et al. 2011. Roboearth-a world wide web for robots. IEEE Robotics and Automation Magazine (RAM), Special Issue Towards a WWW for Robots.
Wang, A. Y., Sable, J. H. & Spackman, K. A. 2002. The SNOMED clinical terms development process: refinement and analysis of content. In Proceedings of the AMIA Symposium. American Medical Informatics Association, 845.
Warnier, M.et al. 2012. When the robot puts itself in your shoes. managing and exploiting human and robot beliefs. In 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication. IEEE, 948–954.
Yanco, H. A. & Drury, J. L. 2002. A taxonomy for human-robot interaction. In Proceedings of the AAAI Fall Symposium on Human-Robot Interaction, 111–119.
Yanco, H. A. & Drury, J. 2004. Classifying human-robot interaction: An updated taxonomy. In 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583) vol. 3, 28412846.
Yazdani, F.et al. 2018. Cognition-enabled framework for mixed human-robot rescue team. In International Conference on Intelligent Robots and Systems (IROS). IEEE. Madrid, Spain.

A review and comparison of ontology-based approaches to robot autonomy

  • Alberto Olivares-Alarcos (a1), Daniel Beßler (a2), Alaa Khamis (a3), Paulo Goncalves (a4), Maki K. Habib (a5), Julita Bermejo-Alonso (a6), Marcos Barreto (a7), Mohammed Diab (a8), Jan Rosell (a8), João Quintas (a9), Joanna Olszewska (a10), Hirenkumar Nakawala (a11), Edison Pignaton (a12), Amelie Gyrard (a13), Stefano Borgo (a14), Guillem Alenyà (a1), Michael Beetz (a2) and Howard Li (a15)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

This addendum applies to the following article(s):