Skip to main content
×
×
Home

A survey of qualitative spatial representations

  • Juan Chen (a1) (a2) (a3), Anthony G. Cohn (a3), Dayou Liu (a1) (a2), Shengsheng Wang (a1) (a2), Jihong Ouyang (a1) (a2) and Qiangyuan Yu (a1) (a2)...
Abstract

Representation and reasoning with qualitative spatial relations is an important problem in artificial intelligence and has wide applications in the fields of geographic information system, computer vision, autonomous robot navigation, natural language understanding, spatial databases and so on. The reasons for this interest in using qualitative spatial relations include cognitive comprehensibility, efficiency and computational facility. This paper summarizes progress in qualitative spatial representation by describing key calculi representing different types of spatial relationships. The paper concludes with a discussion of current research and glimpse of future work.

Copyright
References
Hide All
Allen, J. F. 1983. Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832843.
Balbiani, P., Condotta, J.-F., del Cerro, L. F. 1998. A model for reasoning about bidemensional temporal relations. In Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR'98), Cohn, A. G., Schubert, L. K. & Shapiro, S. C. (eds). Trento, Italy, June 2–5. Morgan Kaufmann, 124–130.
Balbiani, P., Condotta, J.-F., del Cerro, L. F. 1999a. A new tractable subclass of the rectangle algebra. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99, Dean, T. (ed.). Stockholm, Sweden, July 31–August 6. Morgan Kaufmann, 442–447.
Balbiani, P., Condotta, J.-F., del Cerro, L. F. 1999b. A tractable subclass of the block algebra: constraint propagation and preconvex relations. In Proceedings of the Progress in Artificial Intelligence, 9th Portuguese Conference on Artificial Intelligence, EPIA ‘99, Évora, Portugal, September 21–24. Lecture Notes in Computer Science 1695, 75–89. Springer.
Balbiani, P., Condotta, J.-F., Ligozat, G. 2006. On the consistency problem for the calculus. Journal of Applied Logic 4(2), 119140.
Bédard, Y., Merrett, T., Han, J. 2001. Fundamentals of spatial data warehousing for geographic knowledge discovery. In Research Monographs in GIS, Miller, J. M. & Han, J. (eds). chapter 3. Taylor & Francis, 4568.
Bennett, B., Isli, A., Cohn, A. G. 1997. When does a composition table provide a complete and tractable proof procedure for a relational constraint language? In Proceedings of the IJCAI97 Workshop on Spatial and Temporal Reasoning, NAGOYA, Aichi, Japan, 1–18.
Bittner, T. 2002. Approximate qualitative temporal reasoning. Annals of Mathematics and Artificial Intelligence 36(1–2), 3980.
Bittner, T., Smith, B. 2001. Granular partitions and vagueness. In Proceedings of the 2nd International Conference on Formal Ontology in Information Systems(FOIS 2001), Welty, C. & Smith, B. (eds). Ogunquit, Maine, USA, October 17–19. ACM Press, 309–320.
Bittner, T., Stell, J. G. 2000. Rough sets in approximate spatial reasoning. In Rough Sets and Current Trends in Computing, Second International Conference, RSCTC 2000 Banff, Canada, October 16–19. Lecture Notes in Computer Science 2005, 445–453. Springer.
Bittner, T., Stell, J. G. 2002. Vagueness and rough location. GeoInformatica 6(2), 99121.
Bogaert, P., de Weghe, N. V., Cohn, A. G., Witlox, F., Maeyer, P. D. 2006. The qualitative trajectory calculus on networks. In Spatial Cognition V: Reasoning, Action, Interaction, International Conference Spatial Cognition 2006, Bremen, Germany, September 24–28, Revised Selected Papers. Lecture Notes in Computer Science 4387, 20–38. Springer.
Chang, S., Jungert, E., Green, R., Gray, D., Powers, E. 1996. Symbolic Projection for Image Information Retrieval and Spatial Reasoning. Elsevier.
Chang, S. K., Shi, Q. Y., Yan, C. W. 1987. Iconic indexing by 2-D strings. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(3), 413428.
Chen, J., ming Li, C., lin Li, Z., Gold, C. M. 2001. A voronoi-based 9-intersection model for spatial relations. International Journal of Geographical Information Science 15(3), 201220.
Chen, J., Jia, H., Liu, D., Zhang, C. 2010a. Inversing cardinal direction relations. In Proceedings of 5th International Conference on Frontier of Computer Science and Technology (FCST 2010), Stojmenovic, I., Farin, G., Guo, M., Jin, H., Li, K., Hu, L., Wei, X. & Che, X. (eds). Changchun, Jilin Province, China, August 18–22. IEEE Computer Society, 276–281.
Chen, J., Jia, H., Liu, D., Zhang, C. 2010b. Composing cardinal direction relations based on interval algebra. International Journal of Software and Informatics 4(3), 291303.
Chen, J., Jia, H., Liu, D., Zhang, C. 2010c. Integrative reasoning with topological, directional and size information based on MBR. Journal of Computer Research and Development 47(3), 426433.
Cicerone, S., Felice, P. D. 2000. Cardinal relations between regions with a broad boundary. In ACM-GIS 2000, Proceedings of the Eighth ACM Symposium on Advances in Geographic Information Systems, Li, K-J., Makki, K., Pissinou, N. & Ravada, S. (eds). Washington D.C., USA, November 10–11. ACM, 15–20.
Cicerone, S., Felice, P. D. 2004. Cardinal directions between spatial objects: the pairwise-consistency problem. Information Sciences 164(1–4), 165188.
Clementini, E. 2008. Projective relations on the sphere. In Proceedings of Advances in Conceptual Modeling – Challenges and Opportunities, ER 2008 Workshops CMLSA, ECDM, FP-UML, M2AS, RIGiM, SeCoGIS, WISM, Barcelona Spain, October 20–23. Lecture Notes in Computer Science 5232, 313–322. Springer.
Clementini, E., Billen, R. 2006. Modeling and computing ternary projective relations between regions. IEEE Transactions on Knowledge and Data Engineering 18(6), 799814.
Clementini, E., Felice, P. D. 1997. Approximate topological relations. International Journal of Approximate Reasoning 16(2), 173204.
Clementini, E., Felice, P. D. 2001. A spatial model for complex objects with a broad boundary supporting queries on uncertain data. Data Knowledge Engineering 37(3), 285305.
Clementini, E., Felice, P. D., Hernández, D. 1997. Qualitative representation of positional information. Artificial Intelligence 95(2), 317356.
Clementini, E., Felice, P. D., van Oosterom, P. 1993. A small set of formal topological relationships suitable for end-user interaction. In Proceedings of the Advances in Spatial Databases, Third International Symposium, SSD'93, Singapore, June 23–25. Lecture Notes in Computer Science 692, 277–295. Springer.
Clementini, E., Skiadopoulos, S., Billen, R., Tarquini, F. 2010. A reasoning system of ternary projective relations. IEEE Transactions on Knowledge and Data Engineering 22(2), 161178.
Cohn, A. G. 1995. A hierarchical representation of qualitative shape based on connection and convexity. In Proceedings of the Spatial Information Theory: A Theoretical Basis for GIS, International Conference COSIT ‘95, Semmering, Austria, September 21–23. Leecture Notes in Computer Science 988, 311–326. Springer.
Cohn, A. G. 1997. Qualitative spatial representation and reasoning techniques. In Proceedings of the KI-97: Advances in Artificial Intelligence, 21st Annual German Conference on Artificial Intelligence, Freiburg, Germany, September 9–12. Lecture Notes in Computer Science 1303, 1–30. Springer.
Cohn, A. G., Bennett, B., Gooday, J., Gotts, N. M. 1997. Qualitative spatial representation and reasoning with the region connection calculus. GeoInformatica 1(3), 275316.
Cohn, A. G., Gotts, N. M. 1996. The ‘egg-yolk’ representation of regions with indeterminate boundaries. In Proceedings GISDATA Specialist Meeting on Spatial Objects with Undetermined Boundaries, Burrough, P. & Frank, A. M. (eds). Francis & Taylor, 171–187.
Cohn, A. G., Hazarika, S. M. 2001. Qualitative spatial representation and reasoning: an overview. Fundamenta Informaticae 46(1–2), 129.
Cohn, A. G., Renz, J. 2007. Qualitative spatial reasoning. In Handbook of Knowledge Representation (Foundations of Artificial Intelligence), van Harmelen, F., Lifschitz, V. & Porter, B. (eds). chapter 13. Elsevier, 551–596.
Condotta, J.-F., Saade, M., Ligozat, G. 2006. A generic toolkit for n-ary qualitative temporal and spatial calculi. In Proceedings of the 13th International Symposium on Temporal Representation and Reasoning (TIME 2006), Budapest, Hungary, June 15–17. IEEE Computer Society, 78–86.
Davis, E., Gotts, N. M., Cohn, A. 1999. Constraint networks of topological relations and convexity. Constraints 4, 241280.
Delafontaine, M., Cohn, A. G., de Weghe, N. V. 2011. Implementing a qualitative calculus to analyse moving point objects. Expert Systems with Applications 38(5), 51875196.
Delafontaine, M., de Weghe, N. V., Bogaert, P., Maeyer, P. D. 2008. Qualitative relations between moving objects in a network changing its topological relations. Information Science 178(8), 19972006.
de Weghe, N. V., Cohn, A. G., Maeyer, P. D. 2004. A qualitative representation of trajectory pairs. In Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004, de Mántaras, R. L. & Saitta, L. (eds). Valencia, Spain, August 22–27. IOS Press, 1103–1104.
de Weghe, N. V., Cohn, A. G., Maeyer, P. D., Witlox, F. 2005a. Representing moving objects in computer-based expert systems: the overtake event example. Expert Systems with Application 29(4), 977983.
de Weghe, N. V., Kuijpers, B., Bogaert, P., Maeyer, P. D. 2005b. A qualitative trajectory calculus and the composition of its relations. In Proceedings of the GeoSpatial Semantics, First International Conference, GeoS 2005, Mexico, November 29–30. Lecture Notes in Computer Science 3799, 60–76. Springer.
Dong, Y., Liu, D., Wang, F., Wang, S., , S. 2011. A MBR-based modeling method for direction relations between indeterminate regions. Acta Eelectronica Sinica 39(2), 329335.
Du, S., Guo, L., Wang, Q. 2008a. A model for describing and composing direction relations between overlapping and contained regions. Information Science 178(14), 29282949.
Du, S., Qin, Q., Wang, Q., Li, B. 2005. Fuzzy description of topological relations I: a unified fuzzy 9-intersection model. In Proceedings of the Advances in Natural Computation, First International Conference, ICNC 2005, Part III, Changsha, China, August 27–29. Lecture Notes in Computer Science 3612, 1261–1273. Springer.
Du, S., Qin, Q., Wang, Q., Ma, H. 2006. Description of combined spatial relations between broad boundary regions based on rough set. In Proceedings of the Intelligent Data Engineering and Automated Learning – IDEAL 2006, 7th International Conference, Burgos, Spain, September 20–23. Lecture Notes in Computer Science 4224, 729–737. Springer.
Du, S., Qin, Q., Wang, Q., Ma, H. 2008b. Reasoning about topological relations between regions with broad boundaries. International Journal of Approximate Reasoning 47(2), 219232.
Düntsch, I., Wang, H., McCloskey, S. 2001. A relation – algebraic approach to the region connection calculus. Theoretical Computer Science 255(1–2), 6383.
Dylla, F., Frommberger, L., Wallgrün, J. O., Wolter, D. 2006. SparQ: a toolbox for qualitative spatial representation and reasoning. In Proceedings of the Workshop on Qualitative Constraint Calculi: Application and Integration at KI 2006, Bremen, Germany, 79–90.
Egenhofer, M. J. 2005. Spherical topological relations. Journal on Data Semantics 3(1), 2549.
Egenhofer, M. J., Clementini, E., Felice, P. D. 1994a. Topological relations between regions with holes. International Journal of Geographical Information Systems 8(2), 129142.
Egenhofer, M. J., Franzosa, R. D. 1991. Point set topological relations. International Journal of Geographical Information Systems 5(2), 161174.
Egenhofer, M. J., Franzosa, R. D. 1995. On the equivalence of topological relations. International Journal of Geographical Information Systems 9(2), 133152.
Egenhofer, M. J., Herring, J. 1991. Categorizing Binary Topological Relationships between Regions, Lines and Points in Geographic Database. Technical report, University of Maine.
Egenhofer, M. J., Mark, D. M., Herring, J. 1994b. The 9-intersection: formalism and its use for natural-language spatial predicates. Technical report, National Center for Geographic Information and Analysis.
Egenhofer, M. J., Sharma, J. 1993. Topological relations between regions in and . In Proceedings of the Advances in Spatial Databases, Third International Symposium, SSD'93, Singapore, June 23–25. Lecture Notes in Computer Science 692, 316–336. Springer.
Egenhofer, M. J., Vasardani, M. 2007. Spatial reasoning with a hole. In Proceedings of the Spatial Information Theory, 8th International Conference, COSIT 2007, Melbourne, Australia, September 19–23. Lecture Notes in Computer Science 4736, 303–320. Springer.
El-Geresy, B. A., Abdelmoty, A. I. 2004. SPARQS: a qualitative spatial reasoning engine. Knowledge Based System 17(2–4), 89102.
Frank, A. U. 1991. Qualitative spatial reasoning with cardinal directions. In Proceedings of the 7th Austrian Conference on Artificial Intelligence, ÖGAI-91, Wien, September 24–27. Informatik-Fachberichte 287, 157–167. Springer.
Frank, A. U. 1996. Qualitative spatial reasoning: cardinal directions as an example. International Journal of Geographical Information Science 10(3), 269290.
Franklin, N., Henkel, L. A., Zangas, T. 1995. Parsing surrounding space into regions. Memory & Cognition 23(4), 397407.
Freksa, C. 1992. Using orientation information for qualitative spatial reasoning. In Proceedings of the Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, International Conference GIS – From Space to Territory: Theories and Methods of Spatio-Temporal Reasoning, Pisa, Italy, September 21–23. Lecture Notes in Computer Science 639, 162–178. Springer.
Galton, A., Meathrel, R. C. 1999. Qualitative outline theory. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99, Dean, T. (ed.). Stockholm, Sweden, July 31–August 6. Morgan Kaufmann, 1061–1066.
Gantner, Z., Westphal, M., Wölfl, S. 2008. GQR – a fast reasoner for binary qualitative constraint calculi. In Proceedings of the AAAI'08 Workshop on Spatial and Temporal Reasoning, Chicago, Illinois, USA, July 13–14. AAAI Press, 24–29.
Gerevini, A., Renz, J. 2002. Combining topological and size information for spatial reasoning. Artificial Intelligence 137(1–2), 142.
Gottfried, B. 2003a. Tripartite line tracks – bipartite line tracks. In Proceedings of the KI 2003: Advances in Artificial Intelligence, 26th Annual German Conference on AI, KI 2003, Hamburg, Germany, September 15–18. Lecture Notes in Computer Science 2821, 535–549. Springer.
Gottfried, B. 2003b. Tripartite line tracks qualitative curvature information. In Proceedings of the Spatial Information Theory. Foundations of Geographic Information Science, International Conference, COSIT 2003, Ittingen, Switzerland, September 24–28. Lecture Notes in Computer Science 2825, 101–117. Springer.
Gottfried, B. 2004. Reasoning about intervals in two dimensions. In Proceedings of the IEEE International Conference on Systems, Man & Cybernetics, The Hague, Netherlands, October 10–13. IEEE, 5324–5332.
Gottfried, B. 2006. Characterising meanders qualitatively. In Geographic Information Science, Proceedings of 4th International Conference, GIScience 2006, Münster, Germany, September 20–23. Lecture Notes in Computer Science 4197, 112–127. Springer.
Gottfried, B. 2008. Qualitative similarity measures – the case of two-dimensional outlines. Computer Vision and Image Understanding 110(1), 117133.
Gotts, N. M., Gooday, J. M., Cohn, A. G. 1996. A connection based approach to common-sense topological description and reasoning. The Monist 79(1), 5175.
Goyal, R. K., Egenhofer, M. J. 2000. Consistent queries over cardinal directions across different levels of detail. In Proceedings of 11th International Workshop on Database and Expert Systems Applications (DEXA'00), Ibrahim, M. T., Küng, J. & Revell, N. (eds). 6–8 September, Greenwich, London, UK. IEEE Computer Society, 876–880.
Goyal, R. K., Egenhofer, M. J. 2001. Similarity of cardinal directions. In Proceedings of the Advances in Spatial and Temporal Databases, 7th International Symposium, SSTD 2001, Redondo Beach, CA, USA, July 12–15. Lecture Notes in Computer Science 2121, 36–58. Springer.
Grenon, P. 2003. Tucking RCC in Cyc's ontological bed. In IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Gottlob, G. & Walsh, T. (eds). Acapulco, Mexico, August 9–15. Morgan Kaufmann, 894–899.
Guo, L., Du, S. 2009. Deriving topological relations between regions from direction relations. Journal of Visual languages and Computing 2(6), 368384.
Hirsch, R. 1999. A finite relation algebra with undecidable network satisfaction problem. Logic Journal of the IGPL 7(4), 547554.
Hobbs, J. R. 1985. Granularity. In Proceedings of the 9th International Joint Conference on Artificial Intelligence, Joshi, A. K. (ed.). Los Angeles, CA, August. Morgan Kaufmann, 432–435.
Huttenlocher, J., Hedges, L. V., Duncan, S. 1991. Categories and particulars: prototype effects in estimating spatial location. Psychological Review 98(3), 352376.
Isli, A., Cohn, A. G. 2000. A new approach to cyclic ordering of 2D orientations using ternary relation algebras. Artificial Intelligence 122(1–2), 137187.
Isli, A., Haarslev, V., Möller, R. 2003. Combining cardinal direction relations and relative orientation relations in qualitative spatial reasoning. Technical report, University of Hamburg, Department of Informatics.
Kurata, Y. 2008. The 9+-intersection: a universal framework for modeling topological relations. In Proceedings of the Geographic Information Science, 5th International Conference, GIScience 2008, Park City, UT, USA, September 23–26. Lecture Notes in Computer Science 5266, 181–198. Springer.
Ladkin, P. B., Maddux, R. D. 1994. On binary constraint problems. Journal of the ACM 41(3), 435469.
Langacker, R. 1987. The Foundations of Cognitive Grammar: volume I: Theoretical Prerequisites, Foundations of Cognitive Grammar. Stanford University Press.
Lee, S.-Y., Hsu, F.-J. 1990. 2D C-string: a new spatial knowledge representation for image database systems. Pattern Recognition 23(10), 10771087.
Leyton, M. 1988. A process-grammar for shape. Artificial Intelligence 34(2), 213247.
Li, S. 2006a. On topological consistency and realization. Constraints 11(1), 3151.
Li, S. 2006b. A complete classification of topological relations using the 9-intersection method. International Journal of Geographical Information Science 20(6), 589610.
Li, S. 2007. Combining topological and directional information for spatial reasoning. In IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Veloso, M. M. (ed.). Hyderabad, India, January 6–12. Morgan Kaufmann, 435–440.
Li, S., Cohn, A. G. 2012. Reasoning with topological and directional spatial information. Computational Intelligence 28(4), 579616.
Li, S., Liu, W. 2010. Topological relations between convex regions. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Fox, M. & Poole, D. (eds). Atlanta, Georgia, USA, July 11–15. AAAI Press, 321–326.
Li, S., Nebel, B. 2007. Qualitative spatial representation and reasoning: a hierarchical approach. The Computer Journal 50(4), 391402.
Li, S., Wang, H. 2006. RCC8 binary constraint network can be consistently extended. Artificial Intelligence 170(1), 118.
Li, S., Ying, M. 2003. Region connection calculus: its models and composition table. Artificial Intelligence 145(1–2), 121146.
Li, S., Ying, M. 2004. Generalized region connection calculus. Artificial Intelligence 160(1–2), 134.
Li, S., Ying, M., Li, Y. 2005. On countable RCC models. Fundamenta Informaticae 65(4), 329351.
Ligozat, G. 1993. Qualitative triangulation for spatial reasoning. In Proceedings of the Spatial Information Theory: A Theoretical Basis for GIS, International Conference COSIT ‘93, Marciana Marina, Elba Island, Italy, September 19–22. Lecture Notes in Computer Science 716, 54–68. Springer.
Liu, D., Hu, H., Wang, S., Xie, Q. 2004. Research progress in spatio-temporal reasoning. Journal of Software 15(8), 11411149.
Liu, J. 1998. A method of spatial reasoning based on qualitative trigonometry. Artificial Intelligence 98(1–2), 137168.
Liu, W., Li, S., Renz, J. 2009. Combining RCC-8 with qualitative direction calculi: algorithms and complexity. In IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Boutilier, C. (ed.). Pasadena, California, USA, July 11–17. AAAI Press, 854–859.
Liu, W., Zhang, X., Li, S., Ying, M. 2010. Reasoning about cardinal directions between extended objects. Artificial Intelligence 174(12–13), 951983.
Liu, Y., Wang, X., Jin, X., Wu, L. 2005. On internal cardinal direction relations. In Proceedings of the Spatial Information Theory, International Conference, COSIT 2005, Ellicottville, NY, USA, September 14–18. Lecture Notes in Computer Science 3693, 283–299. Springer.
Moratz, R. 2006. Representing relative direction as a binary relation of oriented points. In Proceedings of the ECAI 2006, 17th European Conference on Artificial Intelligence, August 29–September 1, 2006, Riva del Garda, Italy, Including Prestigious Applications of Intelligent Systems (PAIS 2006), Frontiers in Artificial Intelligence and Applications. IOS Press, 407–411.
Moratz, R., Ragni, M. 2008. Qualitative spatial reasoning about relative point position. Journal of Visual Languages and Computing 19(1), 7598.
Moratz, R., Renz, J., Wolter, D. 2000. Qualitative spatial reasoning about line segments. In ECAI 2000, Proceedings of the 14th European Conference on Artificial Intelligence, Horn, W. (ed.). Berlin, Germany, August 20–25. IOS Press, 234–238.
Moreira, J., Ribeiro, C., Saglio, J. 1999. Representation and manipulation of moving points:an extended data model for location estimation. Cartography and Geographic Information Systems 26(2), 109123.
Mossakowski, T., Moratz, R. 2012. Qualitative reasoning about relative direction of oriented points. Artificial Intelligence 180–181, 3445.
Navarrete, I., Sciavicco, G. 2006. Spatial reasoning with rectangular cardinal direction relations. In ECAI 2006, 17th European Conference on Artificial Intelligence, Workshop on Spatialand Temporal Reasoning, Riva del Garda, Italy, August 29–September 1, 1–10.
Ouyang, J., Fu, Q., Liu, D. 2009a. A model for representing and reasoning of spatial relations between simple concave regions. Acta Electronica Sinica 37(8), 18301836.
Ouyang, J., Fu, Q., Liu, D. 2009b. Improved method of qualitative shape representation for sameside distinction of concavities. Journal of Jilin University (Engineering and Technology Edition) 39(2), 413418.
Pacheco, J., Escrig, M. T., Toledo, F. 2002. Integrating 3D orientation models. In Proceedings of the Topics in Artificial Intelligence, 5th Catalonian Conference on AI, CCIA 2002, Castellón, Spain, October 24–25. Lecture Notes in Computer Science 2504, 88–100. Springer.
Palshikar, G. K. 2004. Fuzzy region connection calculus in finite discrete space domains. Applied Soft Computing 4(1), 1323.
Pujari, A. K., Kumari, G. V., Sattar, A. 1999. : An interval and duration network. In Proceedings of the Advanced Topics in Artificial Intelligence, 12th Australian Joint Conference on Artificial Intelligence, AI ‘99, Sydney, Australia, December 6–10. Lecture Notes in Computer Science 1747, 291–303. Springer.
Randell, D. A., Cohn, A. G., Cui, Z. 1992a. Computing transivity tables: a challenge for automated theorem provers. In Proceedings of the Automated Deduction – CADE-11, 11th International Conference on Automated Deduction, Saratoga Springs, NY, USA, June 15–18. Lecture Notes in Computer Science 607, 786–790. Springer.
Randell, D. A., Cui, Z., Cohn, A. G. 1992b. A spatial logic based on regions and connection. In Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR'92), Nebel, B., Rich, C. & Swartout, W. R. (eds). Cambridge, MA, October 25-29. Morgan Kaufmann, 165–176.
Renz, J. 2001. A spatial odyssey of the interval algebra: 1. directed intervals. In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, Nebel, B. (ed.). Washington, USA, August 4–10. Morgan Kaufmann, 51–56.
Renz, J. 2002. Qualitative Spatial Reasoning with Topological Information, Lecture Notes in Computer Science 2293. Springer. ISBN 3-540-43346-5.
Renz, J., Ligozat, G. 2005. Weak composition for qualitative spatial and temporal reasoning. In Proceedings of the Principles and Practice of Constraint Programming – CP 2005, 11th International Conference, CP 2005, Sitges, Spain, October 1–5, 2005, Lecture Notes in Computer Science 3709, 534–548. Springer.
Renz, J., Nebel, B. 1999. On the complexity of qualitative spatial reasoning: a maximal tractable fragment of the region connection calculus. Artificial Intelligence 108(1–2), 69123.
Roddick, J. F., Spiliopoulou, M. 2002. A survey of temporal knowledge discovery paradigms and methods. IEEE Transactions on Knowledge and Data Engineering 14(4), 750767.
Röhrig, R. 1994. A theory for qualitative spatial reasoning based on order relations. In Proceedings of the 12th National Conference on Artificial Intelligence, Hayes-Roth, B. & Korf, R. E. (eds). volume 2, Seattle, WA, USA, July 31–August 4. AAAI Press/The MIT Press, 1418–1423.
Röhrig, R. 1997. Representation and processing of qualitative orientation knowledge. In KI-97: Advances in Artificial Intelligence, Proceedings of 21st Annual German Conference on Artificial Intelligence, Freiburg, Germany, September 9–12. Lecture Notes in Computer Science 1303, 219–230. Springer.
Roy, A. J., Stell, J. G. 2001. Spatial relations between indeterminate regions. International Journal of Approximate Reasoning 27(3), 205234.
Schneider, M. 2000. Finite resolution crisp and fuzzy spatial objects. In Proceedings of the 9th International Symposium on Spatial Data Handling(SDH), volume 2, Beijing, China, 3–17.
Schneider, M. 2003. Design and implementation of finite resolution crisp and fuzzy spatial objects. Data and Knowledge Engineering 44(1), 81108.
Schneider, M., Behr, T. 2006. Topological relationships between complex spatial objects. ACM Transactions on Database System 31(1), 3981.
Schneider, M., Chen, T., Viswanathan, G., Yuan, W. 2012. Cardinal directions between complex regions. ACM Transactions on Database System 37(2), 840.
Schockaert, S., Cock, M. D., Cornelis, C., Kerre, E. E. 2008. Fuzzy region connection calculus: an interpretation based on closeness. International Journal of Approximate Reasoning 48(1), 332347.
Schockaert, S., Cock, M. D., Kerre, E. E. 2009. Spatial reasoning in a fuzzy region connection calculus. Artificial Intelligence 173(2), 258298.
Schockaert, S., Cornelis, C., Cock, M. D., Kerre, E. 2006. Fuzzy spatial relations between vague regions. In Proceedings of the 3rd International IEEE Conference on Intelligent Systems, London UK, September 4–6. International IEEE Conference Print, 221–226.
Scivos, A., Nebel, B. 2004. The finest of its class: the natural point-based ternary calculus for qualitative spatial reasoning. In Spatial Cognition IV: Reasoning, Action, Interaction, International Conference Spatial Cognition 2004, Frauenchiemsee, Germany, October 11–13, Revised Selected Papers. Lecture Notes in Computer Science 3343, 283–303. Springer.
Sirin, E., Parsia, B. 2004. Pellet: an OWL DL reasoner. In Proceedings of the 2004 International Workshop on Description Logics (DL2004), Whistler, British Columbia, Canada, June 6–8. CEUR Workshop Proceedings 104. CEUR-WS.org.
Sistla, A. P., Yu, C. T. 2000. Reasoning about qualitative spatial relationships. Journal of Automated Reasoning 25(4), 291328.
Skiadopoulos, S., Koubarakis, M. 2004. Composing cardinal direction relations. Artificial Intelligence 152(2), 143171.
Skiadopoulos, S., Koubarakis, M. 2005. On the consistency of cardinal direction constraints. Artificial Intelligence 163(1), 91135.
Skiadopoulos, S., Sarkas, N., Sellis, T. K., Koubarakis, M. 2007. A family of directional relation models for extended objects. IEEE Transactions on Knowledge and Data Engineering 19(8), 11161130.
Stell, J. G. 2003. Qualitative extents for spatio-temporal granularity. Spatial Cognition and Computation 3, 119136.
Stickel, M. E., Waldinger, R. J., Chaudhri, V. K. 2000. A guide to SNARK. Technical report, AI Center, SRI International.
Stocker, M., Sirin, E. 2009. PelletSpatial: a hybrid RCC-8 and RDF/OWL reasoning and query engine. In Proceedings of the 5th International Workshop on OWL: Experiences and Directions (OWLED 2009), Chantilly, VA, United States, October 23–24. CEUR Workshop Proceedings 529. CEUR-WS.org.
Tarski, A. 1941. On the calculus of relations. Journal of Symbolic Logic 6(3), 7389.
Vasardani, M., Egenhofer, M. J. 2008. Single-holed regions: their relations and inferences. In Proceedings of the Geographic Information Science, 5th International Conference, GIScience 2008, Park City, UT, USA, September 23–26. Lecture Notes in Computer Science 5266, 337–353. Springer.
Vasardani, M., Egenhofer, M. J. 2009. Comparing relations with a multi-holed region. In Proceedings of the Spatial Information Theory, 9th International Conference, COSIT 2009, Aber Wrac'h, France, September 21–25. Lecture Notes in Computer Science 5756, 159–176. Springer.
Vieu, L. 1997. Spatial Representation and Reasoning in Artificial Intelligence. Spatial and Temporal Reasoning, 541.
Vilain, M., Kautz, H., van Beek, P. 1990. Constraint propagation algorithms for temporal reasoning: a revised report. Morgan Kaufmann Publishers Inc., 373381.
Waldinger, R., Jarvis, P., Dungan, J. 2003. Using deduction to choreograph multiple data sources. In Proceedings of the Semantic Web – ISWC 2003: Second International Semantic Web Conference, Sanibel Island, FL, USA, October 20–23. Lecture Notes of Computer Science 2870. Springer.
Wallgrün, J. O., Frommberger, L., Dylla, F., Wolter, D. 2010. Sparq user manual v0.7. Technical report, SFB/TR 8 spatial Cognition- Project R3-[Q-Shape].
Wallgrün, J. O., Frommberger, L., Wolter, D., Dylla, F., Freksa, C. 2006. Qualitative spatial representation and reasoning in the sparq-toolbox. In Spatial Cognition V: Reasoning, Action, Interaction, International Conference Spatial Cognition 2006, Bremen, Germany, September 24–28, Revised Selected Papers, Lecture Notes in Computer Science 4387, 39–58. Springer.
Wang, S., Liu, D., Hu, H., Wang, X. 2003. Approximate spatial relation algebra ASRA and application. Journal of Image and Graphics 8(8), 946950.
Wang, S., Liu, D., Liu, J. 2005. A new spatial algebra for road network moving objects. International Journal of Information Technology 11(12), 4758.
Wölfl, S., Westphal, M. 2009. On combinations of binary qualitative constraint calculi. In IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Boutilier, C. (ed.). Pasadena, California, USA, July 11–17. AAAI Press, 967–973.
Wolter, D., Lee, J. H. 2010. Qualitative reasoning with directional relations. Artificial Intelligence 174(18), 14981507.
Yu, Q., Liu, D., Liu, Y. 2004. An extended egg-yolk model between indeterminate regions. Acta Eelectronica Sinica 32(4), 610615.
Zhan, F. B. 1998. Approximate analysis of binary topological relations between geographic regions with indeterminate boundaries. Soft Computing 2(2), 2834.
Zhan, F. B., Lin, H. 2003. Overlay of two simple polygons with indeterminate boundaries. Transactions in GIS 7(1), 6781.
Zimmermann, K. 1993. Enhancing qualitative spatial reasoning – combining orientation and distance. In Proceedings of the Spatial Information Theory: A Theoretical Basis for GIS, International Conference COSIT ‘93, Marciana Marina, Elba Island, Italy, September 19–22. Lecture Notes in Computer Science 716, 69–76. Springer.
Zimmermann, K., Freksa, C. 1996. Qualitative spatial reasoning using orientation, distance, and path knowledge. Applied Intelligence 6(1), 4958.
Zlatanova, S. 2000. 3D GIS for Urban Development. PhD thesis, The International Institute for Aerospace Survey and Earth Sciences.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Knowledge Engineering Review
  • ISSN: 0269-8889
  • EISSN: 1469-8005
  • URL: /core/journals/knowledge-engineering-review
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed