Hostname: page-component-68c7f8b79f-pksg9 Total loading time: 0 Render date: 2026-01-01T16:05:19.962Z Has data issue: false hasContentIssue false

Theory-Driven Statistical Modeling for Semantics and Pragmatics: A Case Study on Grammatically Generated Implicature Readings

Published online by Cambridge University Press:  01 January 2026

Michael Franke*
Affiliation:
University of Osnabrück
Leon Bergen*
Affiliation:
University of California, San Diego
Get access

Abstract

Computational probabilistic modeling is increasingly popular in linguistics, but its relationship with linguistic theory is ambivalent. We argue here for the potential benefit of theory-driven statistical modeling, based on a case study situated at the semantics-pragmatics interface. Using data from a novel experiment, we employ Bayesian model comparison to evaluate the predictive adequacy of four models that differ in the extent to and manner in which grammatically generated candidate readings are taken into account in four probabilistic pragmatic models of utterance and interpretation choice. The data provide strong evidence for the idea that the full range of potential readings made available by recently popular grammatical approaches to scalar-implicature computation might be needed, and that classical Gricean reasoning may help manage the manifold ambiguity introduced by grammatical approaches to these. The case study thereby shows a way of bridging linguistic theory and empirical data with the help of probabilistic pragmatic modeling as a linking function.

Information

Type
Research Report
Copyright
Copyright © 2020 Linguistic Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bergen, Leon, Levy, Roger; and Goodman, Noah D.. 2016. Pragmatic reasoning through semantic inference. Semantics and Pragmatics 9:20. DOI: 10.3765/sp.9.20.10.3765/sp.9.20CrossRefGoogle Scholar
Bott, Oliver, Featherston, Sam, Radó;, Janina and Stolterfoht, Britta. 2011. The application of experimental methods in semantics. Semantics: An international handbook of natural language meaning, vol. 1, ed. by Maienborn, Claudia, Heusinger, Klaus von, and Portner, Paul, 305–21. Berlin: De Gruyter. DOI: 10.1515/9783110226614.305.Google Scholar
Brasoveanu, Adrian, and Dotlačil, Jakub. 2020. Computational cognitive modeling and linguistic theory. Berlin: Springer.CrossRefGoogle Scholar
Chemla, Emmanuel, and Singh, Raj. 2014. Remarks on the experimental turn in the study of scalar implicature, parts 1 and 2. Language and Linguistics Compass 8(9). 373–86, 387–99. DOIs: 10.1111/lnc3.12081; 10.1111/lnc3.12080.Google Scholar
Chemla, Emmanuel, and Spector, Benjamin. 2011. Experimental evidence for embedded scalar implicatures. Journal of Semantics 28. 359400. DOI: 10.1093/jos/ffq023.10.1093/jos/ffq023CrossRefGoogle Scholar
Chierchia, Gennaro, Fox, Danny; and Spector, Benjamin. 2012. Scalar implicature as a grammatical phenonenon. Semantics: An international handbook of natural language meaning, vol. 3, ed. by Maienborn, Claudia, Heusinger, Klaus von, and Portner, Paul, 22972332. DOI: 10.1515/9783110253382.2297.Google Scholar
Degen, Judith, and Tanenhaus, Michael K.. 2015. Processing scalar implicature: A constraint-based approach. Cognitive Science 39. 667710. DOI: 10.1111/cogs.12171.10.1111/cogs.12171CrossRefGoogle ScholarPubMed
Fox, Danny. 2007. Free choice and the theory of scalar implicatures. Presupposition and implicature in compositional semantics, ed. by Sauerland, Uli and Stateva, Penka, 71120. London: Palgrave MacMillan. DOI: 10.1057/9780230210752_4.10.1057/9780230210752_4CrossRefGoogle Scholar
Fox, Danny, and Spector, Benjamin. 2018. Economy and embedded exhaustification. Natural Language Semantics 26(1). 150. DOI: 10.1007/s11050-017-9139-6.10.1007/s11050-017-9139-6CrossRefGoogle Scholar
Frank, Michael C., and Goodman, Noah D.. 2012. Predicting pragmatic reasoning in language games. Science 336(6084).998. DOI: 10.1126/science.1218633.10.1126/science.1218633CrossRefGoogle ScholarPubMed
Franke, Michael. 2009. Signal to act: Game theory in pragmatics. Amsterdam: Universiteit van Amsterdam dissertation. Online: https://hdl.handle.net/11245/1.313416.Google Scholar
Franke, Michael, and Jäger, Gerhard. 2016. Probabilistic pragmatics, or why Bayes' rule is probably important for pragmatics. Zeitschrift für Sprachwissenschaft 35(1). 344. DOI: 10.1515/zfs-2016-0002.CrossRefGoogle Scholar
Franke, Michael, Schlotterbeck, Fabian; and Augurzky, Petra. 2017. Embedded scalars, preferred readings and prosody: An experimental revisit. Journal of Semantics 34(1). 153–99. DOI: 10.1093/jos/ffw007.Google Scholar
Geurts, Bart. 2010. Quantity implicatures. Cambridge: Cambridge University Press.10.1017/CBO9780511975158CrossRefGoogle Scholar
Geurts, Bart, and Pouscoulous, Nausicaa. 2009. Embedded implicatures?!? Semantics and Pragmatics 2:4. DOI: 10.3765/sp.2.4.Google Scholar
Geurts, Bart, and van Tiel, Bob. 2013. Embedded scalars. Semantics and Pragmatics 6:9. DOI: 10.3765/sp.6.9.10.3765/sp.6.9CrossRefGoogle Scholar
Goodman, Noah D., and Frank, Michael C.. 2016. Pragmatic language interpretation as probabilistic inference. Trends in Cognitive Sciences 20(11). 818–29. DOI: 10.1016/j.tics.2016.08.005.10.1016/j.tics.2016.08.005CrossRefGoogle ScholarPubMed
Goodman, Noah D., and Stuhlmüller, Andreas. 2013. Knowledge and implicature: Modeling language understanding as social cognition. Topics in Cognitive Science 5(1). 173–84. DOI: 10.1111/tops.12007.CrossRefGoogle ScholarPubMed
Gotzner, Nicole, and Romoli, Jacopo. 2018. The scalar inferences of strong scalar terms under negative quantifiers and constraints on the theory of alternatives. Journal of Semantics 35(1). 95126. DOI: 10.1093/jos/ffx016.10.1093/jos/ffx016CrossRefGoogle Scholar
Grice, H. Paul. 1975. Logic and conversation. Syntax and semantics, vol. 3: Speech acts, ed. by Cole, Peter and Morgan, Jerry L., 4158. New York: Academic Press.Google Scholar
Gureckis, Todd M., Martin, Jay, McDonnell, John, Rich, Alexander S., Markant, Doug, Coenen, Anna, Halpern, David, Hamrick, Jessica B.; and Chan, Patricia. 2016. psiTurk: An open-source framework for conducting replicable behavioral experiments online. Behavior Research Methods 48(3). 829–42. DOI: 10.3758/s13428-015-0642-8.10.3758/s13428-015-0642-8CrossRefGoogle ScholarPubMed
Herbstritt, Michele, and Franke, Michael. 2019. Complex probability expressions & higher-order uncertainty: Compositional semantics, probabilistic pragmatics & experimental data. Cognition 186. 5071. DOI: 10.1016/j.cognition.2018.11.013.10.1016/j.cognition.2018.11.013CrossRefGoogle ScholarPubMed
Horn, Laurence R. 2004. Implicature. The handbook of pragmatics, ed. by Horn, Laurence R. and Ward, Gregory, 328. Oxford: Blackwell.Google Scholar
Jeffreys, Harold. 1961. Theory of probability. 3rd edn. Oxford: Oxford University Press.Google Scholar
Kass, Robert E., and Raftery, Adrian E.. 1995. Bayes factors. Journal of the American Statistical Association 90(430). 773–95. DOI: 10.1080/01621459.1995.10476572.CrossRefGoogle Scholar
Kruschke, John E. 2015. Doing Bayesian data analysis. 2nd edn. Burlington, MA: Academic Press.Google Scholar
Lassiter, Daniel, and Goodman, Noah D.. 2017. Adjectival vagueness in a Bayesian model of interpretation. Synthese 194(10). 3801–13. DOI: 10.1007/s11229-015-0786-1.10.1007/s11229-015-0786-1CrossRefGoogle Scholar
Lee, Michael D., and Wagenmakers, Eric-Jan. 2015. Bayesian cognitive modeling: A practical course. Cambridge: Cambridge University Press.Google Scholar
Levinson, Stephen C. 2000. Presumptive meanings: The theory of generalized conversational implicature. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
McElreath, Richard. 2016. Statistical rethinking. Boca Raton: Chapman and Hall.Google Scholar
Noveck, Ira A., and Sperber, Dan (eds.) 2004. Experimental pragmatics. Hampshire: Pal-grave MacMillan.CrossRefGoogle Scholar
Potts, Christopher, Lassiter, Daniel, Levy, Roger; and Frank, Michael C.. 2016. Embedded implicatures as pragmatic inferences under compositional lexical uncertainty. Journal of Semantics 33(4). 755802. DOI: 10.1093/jos/ffv012.Google Scholar
Schwarz, Gideon. 1978. Estimating the dimension of a model. Annals of Statistics 6(2). 461–64. Online: https://www.jstor.org/stable/2958889.10.1214/aos/1176344136CrossRefGoogle Scholar
Sprouse, Jon. 2007. A program for experimental syntax: Finding the relationship between acceptability and grammatical knowledge. College Park: University of Maryland dissertation. Online: http://ling.umd.edu/publications/91/.Google Scholar
van Tiel, Bob. 2014. Quantity matters: Implicatures, typicality, and truth. Nijmegen: Radboud Universiteit Nijmegen dissertation.Google Scholar