Hostname: page-component-68c7f8b79f-7wx25 Total loading time: 0 Render date: 2026-01-01T06:25:43.238Z Has data issue: false hasContentIssue false

Vowel Normalization as Perceptual Constancy

Published online by Cambridge University Press:  01 January 2026

Santiago Barreda*
Affiliation:
University of California, Davis
Get access

Abstract

This study investigates how listeners associate acoustically different vowels with a single linguistic vowel quality. Listeners were asked to identify vowel sounds as /æ/ or /ʌ/ and to indicate the size of the speaker that produced them. Results indicate that perceived vowel quality trades off with the perception of speaker size: different vowels can sound the same, and the same vowel can sound different when a different speaker is perceived. These findings suggest that vowel normalization is broadly similar to perceptual constancy in other domains, and that social, indexical, and linguistic information play an important role in determining even the most fundamental units of linguistic representation.

Information

Type
Research Article
Copyright
Copyright © 2020 Linguistic Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Assmann, Peter F., and Nearey, Terrance M.. 2008. Identification of frequency-shifted vowels. The Journal of the Acoustical Society of America 124. 3203–31. DOI: 10.1121/1.2980456.10.1121/1.2980456CrossRefGoogle ScholarPubMed
Assmann, Peter F., Nearey, Terrance M.; and Hogan, John T.. 1982. Vowel identification: Orthographic, perceptual, and acoustic aspects. The Journal of the Acoustical Society of America 71. 975–89. DOI: 10.1121/1.387579.10.1121/1.387579CrossRefGoogle ScholarPubMed
Barr, Dale J., Levy, Roger, Scheepers, Christoph; and Tily, Harry J.. 2013. Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language 68. 255–78. DOI: 10.1016/j.jml.2012.11.001.CrossRefGoogle ScholarPubMed
Barreda, Santiago. 2012. Vowel normalization and the perception of speaker changes: An exploration of the contextual tuning hypothesis. The Journal of the Acoustical Society of America 132. 3453–36. DOI: 10.1121/1.4747011.10.1121/1.4747011CrossRefGoogle ScholarPubMed
Barreda, Santiago. 2013. Cognitively-active speaker normalization based on formant-frequency scaling estimation. Alberta: University of Alberta dissertation. DOI: 10.7939/R34Q7QZ5N.Google Scholar
Barreda, Santiago. 2017. An investigation of the systematic use of spectral information in the determination of apparent-talker height. The Journal of the Acoustical Society of America 141. 4781–19. DOI: 10.1121/1.4985192.10.1121/1.4985192CrossRefGoogle ScholarPubMed
Barreda, Santiago, and Assmann, Peter F.. 2018. Modeling the perception of children's age from speech acoustics. The Journal of the Acoustical Society of America 143: EL361. DOI: 10.1121/1.5037614.CrossRefGoogle ScholarPubMed
Barreda, Santiago, and Nearey, Terrance M.. 2012. The direct and indirect roles of fundamental frequency in vowel perception. The Journal of the Acoustical Society of America 131(1). 466–77. DOI: 10.1121/1.3662068.CrossRefGoogle ScholarPubMed
Barreda, Santiago, and Nearey, Terrance M.. 2013. Training listeners to report the acoustic correlate of formant-frequency scaling using synthetic voices. The Journal of the Acoustical Society of America 133. 1065–57. DOI: 10.1121/1.4773858.CrossRefGoogle ScholarPubMed
Barreda, Santiago, and Nearey, Terrance M.. 2018. A regression approach to vowel normalization for missing and unbalanced data. The Journal of the Acoustical Society of America 144. 500520. DOI: 10.1121/1.5047742.10.1121/1.5047742CrossRefGoogle ScholarPubMed
Boersma, Paul, and Weenink, David. 2016. Praat: Doing phonetics by computer. Online: http://www.praat.org.Google Scholar
Bristow, Davina, Dehaene-Lambertz, Ghislaine, Mattout, Jeremie, Soares, Catherine, Gliga, Teodora, Baillet, Sylvain; and Mangin, Jean-François. 2008. Hearing faces: How the infant brain matches the face it sees with the speech it hears. Journal of Cognitive Neuroscience 21. 905–21. DOI: 10.1162/jocn.2009.21076.10.1162/jocn.2009.21076CrossRefGoogle Scholar
Broadbent, D. E., Ladefoged, Peter; and Lawrence, W.. 1956. Vowel sounds and perceptual constancy. Nature 178. 815–16. DOI: 10.1038/178815b0.10.1038/178815b0CrossRefGoogle ScholarPubMed
Charlton, Benjamin D., Ellis, William A. H., Brumm, Jacqui, Nilsson, Karen; and Fitch, W. Tecumseh. 2012. Female koalas prefer bellows in which lower formants indicate larger males. Animal Behaviour 84. 1565–57. DOI: 10.1016/j.anbehav.2012.09.034.10.1016/j.anbehav.2012.09.034CrossRefGoogle Scholar
Charlton, Benjamin D., Reby, David; and McComb, Karen. 2007. Female red deer prefer the roars of larger males. Biology Letters 3. 382–85. DOI: 10.1098/rsbl.2007.0244.CrossRefGoogle Scholar
Charlton, Benjamin D., Reby, David; and McComb, Karen. 2008. Effect of combined source (F0) and filter (formant) variation on red deer hind responses to male roars. The Journal of the Acoustical Society of America 123. 2936–64. DOI: 10.1121/1.2896758.CrossRefGoogle Scholar
D'Onofrio, Annette, Pratt, Teresa; and Van Hofwegen, Janneke. 2019. Compression in the California Vowel Shift: Tracking generational sound change in California's Central Valley. Language Variation and Change 31. 193217. DOI: 10.1017/S0954394519000085.CrossRefGoogle Scholar
Fant, Gunnar. 1966. A note on vocal tract size factors and non-uniform F-pattern scalings. Speech Transmission Laboratory—Quarterly Progress and Status Report 7(4). 2230. Online: http://www.speech.kth.se/prod/publications/files/qpsr/1966/1966_7_4_022-030.pdf.Google Scholar
Fant, Gunnar. 1975. Non-uniform vowel normalization. Speech Transmission Laboratory—Quarterly Progress and Status Report 16(2–3). 119. Online: http://www.speech.kth.se/prod/publications/files/qpsr/1975/1975_16_2-3_001-019.pdf.Google Scholar
Fitch, W. Tecumseh, and Giedd, Jay. 1999. Morphology and development of the human vocal tract: A study using magnetic resonance imaging. The Journal of the Acoustical Society of America 106. 1511–12. DOI: 10.1121/1.427148.10.1121/1.427148CrossRefGoogle ScholarPubMed
Fowler, Carol A., and Turvey, Michael T.. 1980. Immediate compensation in bite-block speech. Phonetica 37. 306–26. DOI: 10.1159/000260000.10.1159/000260000CrossRefGoogle Scholar
Fryar, Cheryl D., Gu, Qiuping; and Ogden, Cynthia L.. 2012. Anthropometric reference data for children and adults: United States, 2007–2010. Vital and Health Statistics 11(252). Hyattsville, MD: US Department of Health and Human Services. Online: https://www.cdc.gov/nchs/data/series/sr_11/sr11_252.pdf.Google Scholar
Gelman, Andrew. 2005. Analysis of variance—why it is more important than ever. The Annals of Statistics 33. 153. DOI: 10.1214/009053604000001048.CrossRefGoogle Scholar
Gick, Bryan, and Derrick, Donald. 2009. Aero-tactile integration in speech perception. Nature 462. 502–4. DOI: 10.1038/nature08572.CrossRefGoogle ScholarPubMed
Glasberg, Brian R., and Moore, Brian C. J.. 1990. Derivation of auditory filter shapes from notched-noise data. Hearing Research 47. 103–38. DOI: 10.1016/0378-5955(90)90170-T.10.1016/0378-5955(90)90170-TCrossRefGoogle ScholarPubMed
Glidden, Catherine M., and Assmann, Peter F.. 2004. Effects of visual gender and frequency shifts on vowel category judgments. Acoustics Research Letters Online 5. 132–38. DOI: 10.1121/1.1764472.10.1121/1.1764472CrossRefGoogle Scholar
Gogel, Walter C. 1969. The effect of object familiarity on the perception of size and distance. Quarterly Journal of Experimental Psychology 21. 239–47. DOI: 10.1080/14640746908400218.10.1080/14640746908400218CrossRefGoogle ScholarPubMed
Granzier, Jeroen J. M., and Gegenfurtner, Karl R.. 2012. Effects of memory colour on colour constancy for unknown coloured objects. i-Perception 3. 190215. DOI: 10.1068/i0461.10.1068/i0461CrossRefGoogle ScholarPubMed
Hilbert, David. 2005. Color constancy and the complexity of color. Philosophical Topics 33. 141–58. Online: https://www.jstor.org/stable/43154713.10.5840/philtopics20053315CrossRefGoogle Scholar
Hillenbrand, James M., and Clark, Michael J.. 2009. The role of f 0 and formant frequencies in distinguishing the voices of men and women. Attention, Perception, & Psychophysics 71. 1150–06. DOI: 10.3758/APP.71.5.1150.CrossRefGoogle ScholarPubMed
Hillenbrand, James M., Getty, Laura A., Clark, Michael J.; and Wheeler, Kimberlee. 1995. Acoustic characteristics of American English vowels. The Journal of the Acoustical Society of America 97. 30993111. DOI: 10.1121/1.411872.10.1121/1.411872CrossRefGoogle ScholarPubMed
Holway, Alfred H., and Boring, Edwin G.. 1941. Determinants of apparent visual size with distance variant. The American Journal of Psychology 54. 2137. DOI: 10.2307/1417790.10.2307/1417790CrossRefGoogle Scholar
Irino, Toshio, and Patterson, Roy D.. 2002. Segregating information about the size and shape of the vocal tract using a time-domain auditory model: The stabilised wavelet-Mellin transform. Speech Communication 36. 181203. DOI: 10.1016/S0167-6393(00)00085-6.CrossRefGoogle Scholar
Johnson, Keith. 1990. The role of perceived speaker identity in F0 normalization of vowels. The Journal of the Acoustical Society of America 88. 642–54. DOI: 10.1121/1.399767.10.1121/1.399767CrossRefGoogle ScholarPubMed
Johnson, Keith. 2005. Speaker normalization in speech perception. The handbook of speech perception, ed. by Pisoni, David B. and Remez, Robert E., 363–89. Oxford: Blackwell.Google Scholar
Johnson, Keith. 2018. Vocal tract length normalization. UC Berkeley Phonetics and Phonology Lab Annual Report (2018), 6582. Online: https://escholarship.org/uc/item/16c753jz.Google Scholar
Johnson, Keith, Strand, Elizabeth A.; and D'Imperio, Mariapaola. 1999. Auditory–visual integration of talker gender in vowel perception. Journal of Phonetics 27. 359–84. DOI: 10.1006/jpho.1999.0100.CrossRefGoogle Scholar
Joos, Martin. 1948. Acoustic phonetics. (Language monograph 23.) Baltimore: Linguistic Society of America. DOI: 10.2307/522229.Google Scholar
Kaiser, Peter K., and Boynton, Robert M.. 1996. Human color vision. 2nd edn. Washington, DC: Optical Society of America.Google Scholar
Kuhl, Patricia K. 1979. Speech perception in early infancy: Perceptual constancy for spectrally dissimilar vowel categories. The Journal of the Acoustical Society of America 66. 1668–87. DOI: 10.1121/1.383639.10.1121/1.383639CrossRefGoogle ScholarPubMed
Kuhl, Patricia K. 1983. Perception of auditory equivalence classes for speech in early infancy. Infant Behavior and Development 6. 263–85. DOI: 10.1016/S0163-6383(83)80036-8.CrossRefGoogle Scholar
Ladefoged, Peter, and Broadbent, D. E.. 1957. Information conveyed by vowels. The Journal of the Acoustical Society of America 29. 98104. DOI: 10.1121/1.1908694.10.1121/1.1908694CrossRefGoogle Scholar
Lammert, Adam C., and Narayanan, Shrikanth S.. 2015. On short-time estimation of vocal tract length from formant frequencies. PLOS ONE 10:e0132193. DOI: 10.1371/journal.pone.0132193.10.1371/journal.pone.0132193CrossRefGoogle ScholarPubMed
Lee, Sungbok, Potamianos, Alexandros; and Narayanan, Shrikanth S.. 1999. Acoustics of children's speech: Developmental changes of temporal and spectral parameters. The Journal of the Acoustical Society of America 105. 1455–56. DOI: 10.1121/1.426686.CrossRefGoogle ScholarPubMed
Lloyd, R. J. 1890. Some researches into the nature of vowel-sound. Liverpool: Turner & Dunnett.Google Scholar
Magnuson, James S., and Nusbaum, Howard C.. 2007. Acoustic differences, listener expectations, and the perceptual accommodation of talker variability. Journal of Experimental Psychology: Human Perception and Performance 33. 391409. DOI: 10.1037/0096-1523.33.2.391.Google ScholarPubMed
Andrés, Martín, Chambeaud, Javier G.; and Barraza, José F.. 2015. The effect of object familiarity on the perception of motion. Journal of Experimental Psychology: Human Perception and Performance 41. 283–88. DOI: 10.1037/xhp0000027.Google Scholar
Martin, Christopher S., Mullennix, John W., Pisoni, David B.; and Summers, Walter V.. 1989. Effects of talker variability on recall of spoken word lists. Journal of Experimental Psychology: Learning, Memory, and Cognition 15. 676–84. DOI: 10.1037/0278-7393.15.4.676.Google ScholarPubMed
McGurk, Harry, and MacDonald, John. 1976. Hearing lips and seeing voices. Nature 264. 746–48. DOI: 10.1038/264746a0.CrossRefGoogle ScholarPubMed
Miller, James D. 1989. Auditory-perceptual interpretation of the vowel. The Journal of the Acoustical Society of America 85. 2114–43. DOI: 10.1121/1.397862.CrossRefGoogle ScholarPubMed
Mullennix, John W., Pisoni, David B.; and Martin, Christopher S.. 1989. Some effects of talker variability on spoken word recognition. The Journal of the Acoustical Society of America 85. 365–78. DOI: 10.1121/1.397688.10.1121/1.397688CrossRefGoogle ScholarPubMed
Nearey, Terrance M. 1978. Phonetic feature systems for vowels. Bloomington: Indiana University Linguistics Club.Google Scholar
Nearey, Terrance M. 1983. Vowel-space normalization procedures and phone-preserving transformations of synthetic vowels. The Journal of the Acoustical Society of America 74.S17. DOI: 10.1121/1.2020835.CrossRefGoogle Scholar
Nearey, Terrance M. 1989. Static, dynamic, and relational properties in vowel perception. The Journal of the Acoustical Society of America 85. 20882113. DOI: 10.1121/1.397861.10.1121/1.397861CrossRefGoogle ScholarPubMed
Nearey, Terrance M., and Assmann, Peter F.. 2007. Probabilistic ‘sliding-template’ models for indirect vowel normalization. Experimental approaches to phonology, ed. by Solé, Maria-Josep, Beddor, Patrice Speeter, and Ohala, Manjari, 246–69. Oxford: Oxford University Press.Google Scholar
Nordström, Per-Erik, and Lindblom, Björn. 1975. A normalization procedure for vowel formant data. Proceedings of the 8th International Congress of Phonetic Sciences (ICPhS), Leeds.Google Scholar
Nusbaum, Howard C., and Magnuson, James S.. 1997. Talker normalization: Phonetic constancy as a cognitive process. Talker variability in speech processing, ed. by Johnson, Keith A. and Mullennix, John W., 109–32. San Diego: Academic Press.Google Scholar
Nusbaum, Howard C., and Morin, Todd M.. 1992. Paying attention to differences among talkers. Speech perception, speech production and linguistic structure, ed. by Tohkura, Yoh'ichi, Vatikiotis-Bateson, Eric, and Sagisaka, Yoshinori, 113–34. Tokyo: Ohmsha.Google Scholar
Patterson, Michelle L., and Werker, Janet F.. 2003. Two-month-old infants match phonetic information in lips and voice. Developmental Science 6. 191–96. DOI: 10.1111/1467-7687.00271.10.1111/1467-7687.00271CrossRefGoogle Scholar
Patterson, Roy D., and Irino, Toshio. 2014. Size matters in hearing: How the auditory system normalizes the sounds of speech and music for source size. Perspectives on auditory research, ed. by Popper, Arthur N. and Fay, Richard R., 417–40. Dordrecht: Springer. DOI: 10.1007/978-1-4614-9102-6_23.Google Scholar
Peterson, Gordon E. 1961. Parameters of vowel quality. Journal of Speech and Hearing Research 4. 1029. DOI: 10.1044/jshr.0401.10.CrossRefGoogle ScholarPubMed
Pickens, Jeffrey. 1994. Perception of auditory-visual distance relations by 5-month-old infants. Developmental Psychology 30. 537–44. DOI: 10.1037/0012-1649.30.4.537.10.1037/0012-1649.30.4.537CrossRefGoogle Scholar
Pietraszewski, David, Wertz, Annie E., Bryant, Gregory A.; and Karen, Wynn. 2017. Three-month-old human infants use vocal cues of body size. Proceedings of the Royal Society B: Biological Sciences 284:20170656. DOI: 10.1098/rspb.2017.0656.10.1098/rspb.2017.0656CrossRefGoogle ScholarPubMed
Pisanski, Katarzyna, Feinberg, David, Oleszkiewicz, Anna; and Sorokowska, Agnieszka. 2017. Voice cues are used in a similar way by blind and sighted adults when assessing women's body size. Scientific Reports 7:10329. DOI: 10.1038/s41598-017-10470-3.CrossRefGoogle Scholar
Pisanski, Katarzyna, and Rendall, Drew. 2011. The prioritization of voice fundamental frequency or formants in listeners' assessments of speaker size, masculinity, and attractiveness. The Journal of the Acoustical Society of America 129. 2201–11. DOI: 10.1121/1.3552866.10.1121/1.3552866CrossRefGoogle ScholarPubMed
Plummer, Martyn. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Online: https://www.r-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf.Google Scholar
Podesva, Robert J., D'Onofrio, Annette, Van Hofwegen, Janneke; and Kim, Seung Kyung. 2015. Country ideology and the California Vowel Shift. Language Variation and Change 27. 157–86. DOI: 10.1017/S095439451500006X.10.1017/S095439451500006XCrossRefGoogle Scholar
Purcell, David W., and Munhall, Kevin G.. 2006. Adaptive control of vowel formant frequency: Evidence from real-time formant manipulation. The Journal of the Acoustical Society of America 120. 966–77. DOI: 10.1121/1.2217714.CrossRefGoogle ScholarPubMed
R Core Team. 2018. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Online: http://www.R-project.org.Google Scholar
Rakerd, Brad, and Verbrugge, Robert R.. 1985. Linguistic and acoustic correlates of the perceptual structure found in an individual differences scaling study of vowels. The Journal of the Acoustical Society of America 77. 296301. DOI: 10.1121/1.392393.10.1121/1.392393CrossRefGoogle Scholar
Reby, David, and Charlton, Benjamin D.. 2012. Attention grabbing in red deer sexual calls. Animal Cognition 15(2). 265–70. DOI: 10.1007/s10071-011-0451-0.10.1007/s10071-011-0451-0CrossRefGoogle Scholar
Reby, David, and McComb, Karen. 2003a. Anatomical constraints generate honesty: Acoustic cues to age and weight in the roars of red deer stags. Animal Behaviour 65. 519–30. DOI: 10.1006/anbe.2003.2078.10.1006/anbe.2003.2078CrossRefGoogle Scholar
Reby, David, and McComb, Karen. 2003b. Vocal communication and reproduction in deer. Advances in the Study of Behavior 33. 231–64. DOI: 10.1016/S0065-3454(03)33005-0.10.1016/S0065-3454(03)33005-0CrossRefGoogle Scholar
Reby, David, McComb, Karen, Cargnelutti, Bruno, Darwin, Chris, Fitch, W. Tecumseh; and Clutton-Brock, Tim. 2005. Red deer stags use formants as assessment cues during intrasexual agonistic interactions. Proceedings of the Royal Society B: Biological Sciences 272. 941–47. DOI: 10.1098/rspb.2004.2954.Google Scholar
Slater, Alan, Mattock, Anne; and Brown, Elizabeth. 1990. Size constancy at birth: Newborn infants' responses to retinal and real size. Journal of Experimental Child Psychology 49. 314–22. DOI: 10.1016/0022-0965(90)90061-C.10.1016/0022-0965(90)90061-CCrossRefGoogle ScholarPubMed
Slater, Alan, and Morison, Victoria. 1985. Shape constancy and slant perception at birth. Perception 14. 337–44. DOI: 10.1068/p140337.CrossRefGoogle ScholarPubMed
Smith, David R. R. 2014. Does knowing speaker sex facilitate vowel recognition at short durations? Acta Psychologica 148. 8190. DOI: 10.1016/j.actpsy.2014.01.010.10.1016/j.actpsy.2014.01.010CrossRefGoogle ScholarPubMed
Smith, David R. R., and Patterson, Roy D.. 2005. The interaction of glottal-pulse rate and vocal-tract length in judgements of speaker size, sex, and age. The Journal of the Acoustical Society of America 118. 3177–78. DOI: 10.1121/1.2047107.10.1121/1.2047107CrossRefGoogle ScholarPubMed
Smith, David R. R., Patterson, Roy D., Turner, Richard, Kawahara, Hideki; and Irino, Toshio. 2005. The processing and perception of size information in speech sounds. The Journal of the Acoustical Society of America 117. 305–18. DOI: 10.1121/1.1828637.Google ScholarPubMed
Smith, David R. R., Walters, Thomas C.; and Patterson, Roy D.. 2007. Discrimination of speaker sex and size when glottal-pulse rate and vocal-tract length are controlled. The Journal of the Acoustical Society of America 122. 3628–83. DOI: 10.1121/1.2799507.10.1121/1.2799507CrossRefGoogle ScholarPubMed
Sperandio, Irene, and Chouinard, Philippe A.. 2015. The mechanisms of size constancy. Multisensory Research 28. 253–83. DOI: 10.1163/22134808-00002483.10.1163/22134808-00002483CrossRefGoogle ScholarPubMed
Story, Brad H., Vorperian, Houri K., Bunton, Kate; and Durtschi, Reid B.. 2018. An age-dependent vocal tract model for males and females based on anatomic measurements. The Journal of the Acoustical Society of America 143. 30793102. DOI: 10.1121/1.5038264.10.1121/1.5038264CrossRefGoogle ScholarPubMed
Sussman, Harvey M. 1986. A neuronal model of vowel normalization and representation. Brain and Language 28. 1223. DOI: 10.1016/0093-934X(86)90087-8.10.1016/0093-934X(86)90087-8CrossRefGoogle ScholarPubMed
Syrdal, Ann K., and Gopal, H. S.. 1986. A perceptual model of vowel recognition based on the auditory representation of American English vowels. The Journal of the Acoustical Society of America 79. 10861100. DOI: 10.1121/1.393381.CrossRefGoogle ScholarPubMed
Taylor, A. M., Reby, David; and McComb, Karen. 2010. Size communication in domestic dog, Canis familiaris, growls. Animal Behaviour 79. 205–10. DOI: 10.1016/j.anbehav.2009.10.030.10.1016/j.anbehav.2009.10.030CrossRefGoogle Scholar
Turner, Richard E., Walters, Thomas C., Monaghan, Jessica J. M.; and Patterson, Roy D.. 2009. A statistical, formant-pattern model for segregating vowel type and vocal-tract length in developmental formant data. The Journal of the Acoustical Society of America 125. 2374–48. DOI: 10.1121/1.3079772.10.1121/1.3079772CrossRefGoogle ScholarPubMed
Wakita, Hisashi. 1977. Normalization of vowels by vocal-tract length and its application to vowel identification. IEEE Transactions on Acoustics, Speech, and Signal Processing 25. 183–92. DOI: 10.1109/TASSP.1977.1162929.10.1109/TASSP.1977.1162929CrossRefGoogle Scholar
Winer, Ethan. 2012. The audio expert: Everything you need to know about audio. Boca Raton, FL: CRC Press.10.4324/9780240821030CrossRefGoogle Scholar
Wong, Patrick C. M., Nusbaum, Howard C.; and Small, Steven L.. 2004. Neural bases of talker normalization. Journal of Cognitive Neuroscience 16. 1173–38. DOI: 10.1162/0898929041920522.10.1162/0898929041920522CrossRefGoogle ScholarPubMed
Zeigler, H. Philip, and Leibowitz, H.. 1957. Apparent visual size as a function of distance for children and adults. The American Journal of Psychology 70. 106–9. DOI: 10.2307/1419238.CrossRefGoogle ScholarPubMed
Zellou, Georgia, and Pycha, Anne. 2018. The gradient influence of temporal extent of coarticulation on vowel and speaker perception. Laboratory Phonology: Journal of the Association for Laboratory Phonology 9:12. DOI: 10.5334/labphon.118.10.5334/labphon.118CrossRefGoogle Scholar
Zhang, Caicai, Peng, Gang; and Wang, William S.-Y.. 2012. Normalizing talker variation in the perception of Cantonese level tones: Impact of speech and nonspeech contexts. Paper presented at Tonal Aspects of Languages—Third International Symposium.Google Scholar