Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-13T01:05:07.114Z Has data issue: false hasContentIssue false

2-D studies of non-uniformly irradiated spherical shells

Published online by Cambridge University Press:  09 March 2009

Stefano Atzeni
Affiliation:
Associazione EURATOM-ENEA sulla Fusione, Centro Ricerche Energia Frascati, C.P. 65, 00044 Frascati, Rome, Italy

Abstract

The effect of long scale-length irradiation non-uniformities on the implosion of two different directly driven, gas filled shells (representative of large families of laser fusion targets) is studied by means of 2-D numerical fluid simulations. Quantitative results are given for parameters measuring the shell deformation and the azimuthal variation of the (density × radius) product (<ρR) as functions of the wavelength and of the amplitude of the irradiation non-uniformity. The reflection of the imploding shock wave is also qualitatively illustrated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atzeni, S. 1986 Comput. Phys. Commun. 43, 107.CrossRefGoogle Scholar
Atzeni, S. 1987 Plasma Phys. Controll. Fusion 29, 1535.CrossRefGoogle Scholar
Atzeni, S. 1989a “2-D Numerical Study of the Hydrodynamics of Laser Accelerated Thin Foils,” Plasma Phys. Controll. Fusion, in press.CrossRefGoogle Scholar
Atzeni, S. 1989b “Sensitivity of ICF Receptor Targets to Long-Wavelength Drive Non-Uniformities,” Europhys. Lett, (submitted).CrossRefGoogle Scholar
Atzeni, S., Caruso, A. & Pais, V.A. 1986 Laser Part. Beams 4, 393.CrossRefGoogle Scholar
Atzeni, S. & Guerrieri, A. 1989 in Proceedings of the 16th European Conference on Controlled Fusion and Plasma Physics,Venice, March 13–17, 1989.Google Scholar
Bodner, S. E. 1981 J. Fusion Energy 1, 221.CrossRefGoogle Scholar
Bodner, S. E., Emery, M. H., & Gardner, J. H. 1987 Plasma Phys. Controll. Fusion 29, 1333.CrossRefGoogle Scholar
Caruso, A. & Gratton, R. 1968 Plasma Phys. 10, 867., Europhys. Conf. Abstracts 13B, part III, 865.Google Scholar
Johnson, T. H. 1984 Proc.IEEE, 72, 548.Google Scholar
Kull, H. J. & Anisimov, S. I. 1986 Phys. Fluids, 29, 2067.CrossRefGoogle Scholar
McCrory, R. L. et al. 1985 in Twenty Years of Programmes in Plasma Physics (edited by McNamara, B.) (World Scientific, Singapore), p. 204.Google Scholar
McCrory, R. L. & Verdon, C. P. 1989 “Computer Modelling and Simulation in Inertial Confinement Fusion,” in Inertial Confinement Fusion (edited by Caruso, A. and Sindoni, E.) Varenna 6–16 September 1988 (Editrice Compositori, Bologna), p. 183.Google Scholar
Mead, W. C. & Lindl, J. D. 1976 Bull. Am. Phys. Soc. 21, 1102.Google Scholar
Richardson, M. C. et al. 1986 Phys. Rev. Lett. 54, 1656.CrossRefGoogle Scholar
Schulz, W. D. 1964 J. Math. Phys. 5, 133.CrossRefGoogle Scholar
Skupsky, S. (Editor) 1985 Laboratory for Laser Energetics Annual Report, LLE Review, vol. 22, p. 125 (Rep. DOE/DP/40200–05).Google Scholar
Skupsky, S., McCrory, R. L. & Verdon, C. P. 1984 Bull. Am. Phys. Soc. 29, 1289.Google Scholar
Storm, E. et al. 1988 “Progress in Laboratory High Gain ICF: Prospects for the uture,” Lawrence Livermore National Laboratory, Rep. UCRL 99383.Google Scholar
Takabe, H. 1988 in Proceedings of the Symposium on Physics of Target Implosion and Pulsed Power Techniques (edited by Niu, K.), Nagoya University, Rep. IPPJ-859, Nagoya, p. 185.Google Scholar
Yamanaka, C. et al. 1986 Phys. Rev. Lett. 56, 1575.CrossRefGoogle Scholar