Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-10-05T19:10:01.309Z Has data issue: false hasContentIssue false

Developments toward hard X-ray radiography on heavy-ion heated dense plasmas

Published online by Cambridge University Press:  28 October 2014

K. Li
Affiliation:
ExtreMe Matter Institute, GSI, Darmstadt, Germany Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany Joint Laboratory on High Power Laser and Physics, SIOM, Shanghai, China
B. Borm
Affiliation:
Goethe-Universität, Frankfurt am Main, Germany
F. Hug
Affiliation:
Institut für Kernphysik,TU Darmstadt, Darmstadt, Germany
D. Khaghani
Affiliation:
ExtreMe Matter Institute, GSI, Darmstadt, Germany Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
B. Löher
Affiliation:
ExtreMe Matter Institute, GSI, Darmstadt, Germany Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
D. Savran
Affiliation:
ExtreMe Matter Institute, GSI, Darmstadt, Germany Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
N. A. Tahir
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
P. Neumayer*
Affiliation:
ExtreMe Matter Institute, GSI, Darmstadt, Germany Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
*
Address correspondence and reprint requests to: P. Neumayer, ExtreMe Matter Institute, GSI, Planckstr. 1, 64291 Darmstadt, Germany. E-mail: p.neumayer@gsi.de

Abstract

We have studied the potential of hard X-ray radiography as a diagnostic in high energy density experiments, proposed for the future Facility for Antiproton and Ion Research (FAIR). We present synthetic radiographic images generated from hydrodynamic simulations of the target evolution. The results suggest that high-resolution density measurements can be obtained from powerful hard X-ray sources driven by a PW-class high-energy laser system. Test measurements of a prototype hard X-ray imaging detector for photon energies above 100 keV are presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., et al. . (2003). Geant4—A simulation toolkit. Nucl. Instr. Meth. A 506, 250303.CrossRefGoogle Scholar
Bagnoud, V., Aurand, B., Blazevic, A., Borneis, S., Bruske, C., Ecker, B., Eisenbarth, U., Fils, J., Frank, A., Gaul, E., Goette, S., Haefner, C., Hahn, T., Harres, K., Heuck, H.-M., Hochhaus, D., Hoffmann, D.H.H., Javorkova, D., Kluge, H.-J., Kuehl, T., Kunzer, S., Kreutz, M., Merz-Mantwill, T., Neumayer, P., Onkels, E., Reemts, D., Rosmej, O., Roth, M., Stoehlker, T., Tauschwitz, A., Zielbauer, B., Zimmer, D. & Witte, K. (2010). Commissioning and early experiments of the PHELIX facility. Appl. Phys. B 100, 137150.CrossRefGoogle Scholar
Beg, F.N., Bell, A.R., Dangor, A.E., Danson, C.N., Fews, A.P., Glinsky, M.E., Hammel, B.A., Lee, P., Norreys, P.A. & Tatarakis, M. (1997). A study of picosecond laser–solid interactions up to 1019 W cm−2. Phys. Plasmas 4, 447457.Google Scholar
Brambrink, E., Wei, H.G., Barbrel, B., Audebert, P., Benuzzi-Mounaix, A., Boehly, T., Endo, T., Gregory, C.D., Kimura, T., Kodama, R., Ozaki, N., Park, H.-S. & Koenig, M. (2009). Direct density measurement of shock-compressed iron using hard x rays generated by a short laser pulse. Phys. Rev. E 80, 056407/1–5.Google Scholar
Henning, W.F. (2004). The future GSI facility. NIM B 214, 211215.Google Scholar
Hicks, D.G., Spears, B.K., Braun, D.G., Olson, R.E., Sorce, C.M., Celliers, P.M., Collins, G.W. & Landen, O.L. (2010). Convergent ablator performance measurements. Phys. Plasmas 17, 102703/1–11.CrossRefGoogle Scholar
Hochhaus, D.C., Aurand, B., Basko, M., Ecker, B., Kühl, T., Ma, T., Rosmej, F., Zielbauer, B. & Neumayer, P. (2013). X-ray radiographic expansion measurements of isochorically heated thin wire targets. Phys. Plasmas 20, 062703/1–7.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Kemp, A.J. & Divol, L. (2012). Interaction physics of multipicosecond petawatt laser pulses with overdense plasma. Phys. Rev. Lett. 109, 195005/1–5.CrossRefGoogle ScholarPubMed
Kritcher, A.L., Döppner, T., Swift, D., Hawreliak, J., Collins, G., Nilsen, J., Bachmann, B., Dewald, E., Strozzi, D., Felker, S., Landen, O.L., Jones, O., Thomas, C., Hammer, J., Keane, C., Lee, H.J., Glenzer, S.H., Rothman, S., Chapman, D., Kraus, D., Neumayer, P. & Falcone, R.W. (2014). Probing matter at Gbar pressures at the NIF. High Energy Density Physics 10, 2734.Google Scholar
Le Pape, S., Neumayer, P., Fortmann, C., Döppner, T., Davis, P., Kritcher, A., Landen, O. & Glenzer, S.H. (2010). X-ray radiography and scattering diagnosis of dense shock-compressed matter. Phys. Plasmas 17, 056309/1–9.Google Scholar
Lomonosov, I.V. (2007). Multi-phase equation of state for aluminium. Laser Part. Beams 25, 567584.Google Scholar
Myatt, J.,Theobald, W., Delettrez, J.A., Stoeckl, C., Storm, M., Sangster, T.C., Maximov, A.V. & Short, R.W. (2007). High-intensity laser interactions with mass-limited solid targets and implications for fast- ignition experiments on OMEGA EP. Phys. Plasmas 14, 056301/1–8.Google Scholar
Neumayer, P., Aurand, B., Basko, M., Ecker, B., Gibbon, P., Hochhaus, D.C., Karmakar, A., Kazakov, E., Kühl, T., Labaune, C., Rosmej, O., Tauschwitz, An., Zielbauer, B. & Zimmer, D. (2010). The role of hot electron refluxing in laser-generated K-alpha sources. Phys. Plasmas 17, 103103/1–7.CrossRefGoogle Scholar
Nilson, P.M., Davies, J.R., Theobald, W., Jaanimagi, P.A., Mileham, C., Jungquist, R.K., Stoeckl, C., Begishev, I.A., Solodov, A.A., Myatt, J.F., Zuegel, J.D., Sangster, T.C., Betti, R. & Meyerhofer, D.D. (2012). Time-resolved measurements of hot-electron equilibration dynamics in high-intensity laser interactions with thin-foil solid targets. Phys. Rev. Lett. 108, 085002/1–5.Google Scholar
Park, H.-S., Chambers, D.M., Chung, H.-K., Clarke, R.J., Eagleton, R., Giraldez, E., Goldsack, T., Heathcote, R., Izumi, N., Key, M.H., King, J.A., Koch, J.A., Landen, O.L., Nikroo, A., Patel, P.K., Price, D.F., Remington, B.A., Robey, H.F., Snavely, R.A., Steinman, D.A., Stephens, R.B., Stoeckl, C., Storm, M., Tabak, M., Theobald, W., Town, R.P.J., Wickersham, J.E. & Zhang, B.B. (2006). High-energy K-alpha radiography using high-intensity, short-pulse lasers. Phys. Plasmas 13, 056309/1–10.Google Scholar
Park, H.-S., Maddox, B.R., Giraldez, E., Hatchett, S.P., Hudson, L.T., Izumi, N., Key, M.H., Le Pape, S., MacKinnon, A.J., MacPhee, A.G., Patel, P.K., Phillips, T.W., Remington, B.A., Seely, J.F., Tommasini, R., Town, R., Workman, J. & Brambrink, E. (2008). High-resolution 17–75 keV backlighters for high energy density experiments. Phys. Plasmas 15, 072705/1–9.Google Scholar
Riley, D., Khattak, F.Y., Garcia Saiz, E., Gregori, G., Bandyopadhyay, S., Notley, M., Neely, D., Chambers, D., Moore, A. & Comley, A. (2007). Spectrally resolved X-ray scatter from laser-shock-driven plasmas. Laser Part. Beams 25, 465469.Google Scholar
Spiller, P. & Franchetti, G. (2006). The FAIR accelerator project at GSI. NIM A 561, 305309.CrossRefGoogle Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001/1–4.CrossRefGoogle Scholar
Tahir, N.A., Stöhlker, Th., Shutov, A., Lomonosov, I.V., Fortov, V.E., French, M., Nettelmann, N., Redmer, R., Piriz, A.R., Deutsch, C., Zhao, Y., Zhang, P., Xu, H., Xiao, G. & Zhan, W. (2010). Ultrahigh compression of water using intense heavy ion beams: laboratory planetary physics. New J. Phys. 12, 073022/1–17.Google Scholar
Tauschwitz, An., Novikov, V.G., Tauschwitz, A.Rosmej, F.B., Abdallah, J., Onkels, E., Jacoby, J. & Maruhn, J.A. (2009). Intense ion beams as a tool for opacity measurements in warm dense matter. Appl. Phys. B 95, 1316.Google Scholar
Tommasini, R., Hatchett, S.P., Hey, D.S., Iglesias, C., Izumi, N., Koch, J.A., Landen, O.L., MacKinnon, A.J., Sorce, C., Delettrez, J.A., Glebov, V.Yu., Sangster, T.C. & Stoeckl, C. (2011). Development of Compton radiography of inertial confinement fusion implosions. Phys. Plasmas 18, 056309/1–7.Google Scholar
Zastrau, U., Audebert, P., Bernshtam, V., Brambrink, E., Kämpfer, T., Kroupp, E., Loetzsch, R., Maron, Y., Ralchenko, Yu., Reinholz, H., Röpke, G., Sengebusch, A., Stambulchik, E., Uschmann, I., Weingarten, L. & Förster, E. (2010). Temperature and Kα-yield radial distributions in laser-produced solid-density plasmas imaged with ultrahigh-resolution X-ray spectroscopy. Phys. Rev. E 81, 026406/1–4.Google Scholar
Zastrau, U., Burian, T., Chalupsky, J., Döppner, T., Dzelzainis, T.W.J., Fäustlin, R.R., Fortmann, C., Galtier, E., Glenzer, S.H., Gregori, G., Juha, L., Lee, H.J., Lee, R.W., Lewis, C.L.S., Medvedev, N., Nagler, B., Nelson, A.J., Riley, D., Rosmej, F.B., Toleikis, S., Tschentscher, T., Uschmann, I., Vinko, S.M., Wark, J.S., Whitcher, T. & Förster, E. (2012). XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH. Laser Part. Beams 30, 4556.Google Scholar