Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-x2fkq Total loading time: 0.269 Render date: 2022-12-05T22:56:40.132Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Effect of transverse magnetic fields on high-harmonic generation in intense laser–solid interaction

Published online by Cambridge University Press:  31 August 2016

J. Mu
Affiliation:
Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
F.-Y. Li
Affiliation:
SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
Z.-M. Sheng*
Affiliation:
Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
J. Zhang
Affiliation:
Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
*
Address correspondence and reprint requests to: Z.-M. Sheng, Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China and SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK. E-mail: zmsheng@sjtu.edu.cn

Abstract

The effect of transverse magnetic fields on surface high-harmonic generation in intense laser–solid interactions is investigated. It is shown that the longitudinal motion of electrons can be coupled with the transverse motion via the magnetic fields, which lead to even-order harmonics under normal laser incidence. The dependence of the coupling efficiency and hence even harmonic generation with preplasma scale length and magnetic field strength are presented based upon particle-in-cell simulations. When the magnetic field is parallel to the laser electric field, the spectral intensity of the second harmonic is proportional to the magnetic field strength in a wide range up to 160 MG, while the situation with the magnetic field perpendicular to the laser electric field is more complicated. The second harmonic generation due to the magnetic field also tends to increase with the plasma density scale lengths, which is different from the high-harmonic generation by the oscillating mirror mechanism. With the increase of the laser spot size from a laser wavelength λL, both the magnetic field-induced harmonics and oscillating mirror high harmonics tend to increase first and then become saturated after 3λL. The magnetic field-induced second harmonic may be used to evaluate large self-generated magnetic fields developed near the critical density region and the preplasma conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An der Brügge, D., Kumar, N., Pukhov, A. & Rödel, C. (2012). Influence of surface waves on plasma high-order harmonic generation. Phys. Rev. Lett. 108, 125002.CrossRefGoogle ScholarPubMed
Bulanov, S.V., Naumova, N.M. & Pegoraro, F. (1994). Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745757.CrossRefGoogle Scholar
Dollar, F., Cummings, P., Chvykov, V., Willingale, L., Vargas, M., Yanovsky, V., Zulick, C., Maksimchuk, A., Thomas, A. & Krushelnick, K. (2013). Scaling high-order harmonic generation from laser–solid interactions to ultrahigh intensity. Phys. Rev. Lett. 110, 175002.CrossRefGoogle ScholarPubMed
Dromey, B., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kar, S., Kneip, S., Markey, K., Nagel, S.R., Willingale, L., McKenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2009). Third harmonic order imaging as a focal spot diagnostic for high intensity laser–solid interactions. Laser Part. Beams 27, 243248.CrossRefGoogle Scholar
Földes, I., Kocsis, G., Racz, E., Szatmari, S. & Veres, G. (2003). Generation of high harmonics in laser plasmas. Laser Part. Beams 21, 517521.CrossRefGoogle Scholar
Fonseca, R.A., Silva, L.O., Tsung, F.S., Decyk, V.K., Lu, W., Ren, C., Mori, W.B., Deng, S., Lee, S., Katsouleas, T. & Adam, J.C. (2002). OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In International Conference on Computational Science, pp. 342351. Berlin, Heidelberg: Springer.Google Scholar
Ghorbanalilu, M. (2012). Second and third harmonics generation in the interaction of strongly magnetized dense plasma with an intense laser beam. Laser Part. Beams 30, 291298.CrossRefGoogle Scholar
Gizzi, L., Giulietti, D., Giulietti, A., Audebert, P., Bastiani, S., Geindre, J.-P. & Mysyrowicz, A. (1996). Simultaneous measurements of hard × rays and second-harmonic emission in fs laser–target interactions. Phys. Rev. Lett. 76, 2278.CrossRefGoogle ScholarPubMed
Kahaly, S., Monchocé, S., Vincenti, H., Dzelzainis, T., Dromey, B., Zepf, M., Martin, P. & Quéré, F. (2013). Direct observation of density-gradient effects in harmonic generation from plasma mirrors. Phys. Rev. Lett. 110, 175001.CrossRefGoogle ScholarPubMed
Kahaly, S., Mondal, S., Kumar, G.R., Sengupta, S., Das, A. & Kaw, P. (2009). Polarimetric detection of laser induced ultrashort magnetic pulses in overdense plasma. Phys. Plasmas 16, 043114.CrossRefGoogle Scholar
Lichters, R., Meyer-ter Vehn, J. & Pukhov, A. (1996). Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 34253437.CrossRefGoogle Scholar
Ma, T., Sawada, H., Patel, P.K., Chen, C.D., Divol, L., Higginson, D.P., Kemp, A.J., Key, M.H., Larson, D.J., Le Pape, S., Link, A., MacPhee, A.G., McLean, H.S., Ping, Y., Stephens, R.B., Wilks, S.C. & Beg, F.N. (2012). Hot electron temperature and coupling efficiency scaling with prepulse for cone-guided fast ignition. Phys. Rev. Lett. 108, 115004.CrossRefGoogle ScholarPubMed
MacPhee, A.G., Divol, L., Kemp, A.J., Akli, K.U., Beg, F.N., Chen, C.D., Chen, H., Hey, D.S., Fedosejevs, R.J., Freeman, R.R., Henesian, M., Key, M.H., Le Pape, S., Link, A., Ma, T., Mackinnon, A.J., Ovchinnikov, V.M., Patel, P.K., Phillips, T.W., Stephens, R.B., Tabak, M., Town, R., Tsui, Y.Y., Van Woerkom, L.D., Wei, M.S. & Wilks, S.C. (2010). Limitation on prepulse level for cone-guided fast-ignition inertial confinement fusion. Phys. Rev. Lett. 104, 055002.CrossRefGoogle ScholarPubMed
Mairesse, Y., De Bohan, A., Frasinski, L.J., Merdji, H., Dinu, L.C., Monchicourt, P., Breger, P., Kovac̆ev, M., Taeb, R., Carré, B., Muller, H.G., Agostini, P. & Salières, P. (2003). Attosecond synchronization of high-harmonic soft x-rays. Science 302(5650), 15401543.CrossRefGoogle ScholarPubMed
Mason, R. & Tabak, M. (1998). Magnetic field generation in high-intensity-laser–matter interactions. Phys. Rev. Lett. 80, 524.CrossRefGoogle Scholar
Ozaki, T., Elouga Bom, L., Ganeev, R., Kieffer, J.-C., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.CrossRefGoogle Scholar
Quéré, F., Thaury, C., Monot, P., Dobosz, S., Martin, P., Geindre, J.-P. & Audebert, P. (2006). Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004.CrossRefGoogle ScholarPubMed
Sheng, Z.-M., Mima, K., Zhang, J. & Sanuki, H. (2005). Emission of electromagnetic pulses from laser wakefields through linear mode conversion. Phys. Rev. Lett. 94, 095003.CrossRefGoogle ScholarPubMed
Stambulchik, E., Tsigutkin, K. & Maron, Y. (2007). Spectroscopic method for measuring plasma magnetic fields having arbitrary distributions of direction and amplitude. Phys. Rev. Lett. 98, 225001.CrossRefGoogle Scholar
Sudan, R.N. (1993). Mechanism for the generation of 109 g magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target. Phys. Rev. Lett. 70, 30753078.CrossRefGoogle Scholar
Tatarakis, M., Watts, I., Beg, F.N., Clark, E.L., Dangor, A.E., Gopal, A., Haines, M.G., Norreys, P.A., Wagner, U., Wei, M.-S., Zepf, M. & Krushelnick, K. (2002). Laser technology: measuring huge magnetic fields. Nature 415(6869), 280280.CrossRefGoogle ScholarPubMed
Tsakiris, G.D., Eidmann, K., Meyer-ter Vehn, J. & Krausz, F. (2006). Route to intense single attosecond pulses. New J. Phys. 8, 19.CrossRefGoogle Scholar
Weng, S., Murakami, M. & Sheng, Z. (2015). Reducing ion energy spread in hole-boring radiation pressure acceleration by using two-ion-species targets. Laser Part. Beams 33, 103107.CrossRefGoogle Scholar
Yeung, M., Bierbach, J., Eckner, E., Rykovanov, S., Kuschel, S., Sävert, A., Förster, M., Rödel, C., Paulus, G.G., Cousens, S., Coughlan, M., Dromey, B. & Zepf, M. (2015). Noncollinear polarization gating of attosecond pulse trains in the relativistic regime. Phys. Rev. Lett. 115, 193903.CrossRefGoogle ScholarPubMed
Zepf, M., Castro-Colin, M., Chambers, D., Preston, S.G., Wark, J.S., Zhang, J., Danson, C.N., Neely, D., Norreys, P., Dangor, A.E., Dyson, A., Lee, P., Fews, A.P., Gibbon, P., Moustaizis, S. & Key, M.H. (1996). Measurements of the hole boring velocity from Doppler shifted harmonic emission from solid targets. Phys. Plasmas 3, 32423244.CrossRefGoogle Scholar
Zheng, J., Tanaka, K., Sentoku, Y., Offenberger, A., Kitagawa, Y., Kodama, R., Kurahashi, T., Mima, K. & Yamanaka, T. (2002). Harmonic emission with cyclotron satellite structure due to strong magnetic fields produced by ultra-intense laser–plasma interaction. Phys. Plasmas 9, 31933196.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of transverse magnetic fields on high-harmonic generation in intense laser–solid interaction
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effect of transverse magnetic fields on high-harmonic generation in intense laser–solid interaction
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effect of transverse magnetic fields on high-harmonic generation in intense laser–solid interaction
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *