Hostname: page-component-758b78586c-t6f8b Total loading time: 0 Render date: 2023-11-29T08:39:12.430Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Influence of laser beam intensity profile on propagation dynamics of laser-blow-off plasma plume

Published online by Cambridge University Press:  11 June 2010

Ajai Kumar*
Institute for Plasma Research, Gandhinagar, India
Sony George
ISP, Cochin University of Science and Tech., Cochin, India
R.K. Singh
Institute for Plasma Research, Gandhinagar, India
V.P.N. Nampoori
ISP, Cochin University of Science and Tech., Cochin, India
Address correspondence and reprint requests to: Ajai Kumar, Institute for Plasma Research, Bhat, Gandhinagar-382 428, India. E-mail:,


Effect of intensity profile of the ablating laser on the dynamics of laser-blow-off (LBO) plume has been studied by fast imaging technique. This work emphasizes the geometrical aspect of the LBO plume, which is an important parameter for various applications. Visualization of the expanding plume reveals that geometrical shape and directionality (divergence) of the plume are highly dependent on the laser intensity profile. Present results demonstrate that the Gaussian profile laser produces a well-collimated, low divergence plasma plume as compared to the plume formed by a top-hat profile laser. The sequence of film removal processes is invoked to explain the role of energy density profile of the ablating laser in LBO mechanism.

Research Article
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Adrian, F.J., Bohandy, J., Kim, B.F., Jette, A.N. & Thomson, P. (1987). A study of the mechanism of metal deposition by the laser-induced forward transfer process. J. Vac. Sci. Technol. B 5, 14901494.Google Scholar
Amoruso, S., Bruzzese, R., Spinelli, N., Velotta, R., Vitiello, M. & Wang, X. (2003). Dynamics of laser-ablated MgB2 plasma expanding in argon probed by optical emission spectroscopy. Phys. Rev. B 67, 224503–1/224503–11.Google Scholar
Amoruso, S., Sambri, A. & Wang, X. (2006). Propagation dynamics of a LaMnO3 laser ablation plume in an oxygen atmosphere. J. Appl. Phys. 100, 013302–1/013302–11.Google Scholar
Anisimov, S.I. & Luk'yanchuk, B.S. (2002). Selected problems of laser ablation theory. Phys. Uspekhi 45, 293324.Google Scholar
Bakos, J.S., Földes, I.B., Ignácz, P.N., Kedves, M.A. & Szigeti, J. (1992). Radiation imprisonment in laser blow-off plasma. Laser Part. Beams 10, 715721.Google Scholar
Baseman, R.J. & Froberg, N.M. (1989). Time-resolved transmission of thin gold films during laser blow-off. Appl. Phys. Lett. 55, 18411843.Google Scholar
Beilis, Isak I. (2007). Laser plasma generation and plasma interaction with ablative target. Laser Part. Beams 25, 5363.Google Scholar
Broer, D.J. & Vriens, L. (1983). Laser-induced optical recording in thin films. Appl. Phys. A 32, 107123.Google Scholar
Bulgakova, N.M., Bulgakov, A.V. & Bobrenok, O.F. (2000). Double layer effects in laser-ablation plasma plumes. Phy. Rev. E 62, 56245635.Google Scholar
Chrisey, D.B. & Hubler, G.K. (1994). Pulsed Laser Deposition of Thin Films. New York: John Wiley & Sons.Google Scholar
Doria, D., Lorusso, A., Belloni, F., Nassisi, V., Torrisi, L. & Gammino, S. (2004). A study of the parameters of particles ejected from a laser plasma. Laser Part. Beams 22, 461467.Google Scholar
Fazio, E., Neri, F., Ossi, P.M., Santo, N. & Trusso, S. (2009). Ag nanocluster synthesis by laser ablation in Ar atmosphere: A plume dynamics analysis. Laser Part. Beams, 27, 281290.Google Scholar
Geohegan, D.B., Puretzky, A.A., Duscher, G. & Pennycook, S.J. (1998). Photoluminescence from gas-suspended SiOx nanoparticles synthesized by laser ablation. Appl. Phys. Lett. 73, 438440.Google Scholar
George, Sony., Kumar, Ajai., Singh, R.K. & Nampoori, V.P.N. (2009). Fast imaging of laser-blow-off plume: Lateral confinement in ambient environment. Appl. Phys. Lett 94, 141501–1/141501–3.Google Scholar
Harilal, S.S. (2007). Influence of spot size on propagation dynamics of laser-produced tin plasma. J. Appl. Phys. 102, 123306–1/123306–6.Google Scholar
Hoffman, D.H.H. (2009). Ion and laser beams as tools for high energy density physics. Laser Part. Beams, 27, 12.Google Scholar
Huber, A., Samm, U., Schweer, B. & Mertens, Ph. (2005). Result from a double Li-beam technique for measurement of both radial and poloidal components of electron density fluctuations using two thermal beams. Plasma Phys. Contr. Fusion 47, 409440.Google Scholar
Key, M.H., Toner, W.T., Goldsack, T.J., Kilkenny, J.D., Veats, S.A., Cunningham, P.F. & Lewis, C.L.S. (1983). A study of ablation by laser irradiation of plane targets at wavelengths 1.05, 0.53, and 0.35 µm. Phys. Fluids 26, 20112026.Google Scholar
Kumar, Ajai., Singh, R.K., Prahlad, V. & Joshi, H.C. (2010). Effect of magnetic field on the Laser-Blow-Off of Li plasma: Role of atomic processes. Laser Part. Beams. 28, 121127.Google Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Velyhan, A., Ullschmied, J., Gammino, S., Torrisi, L., Badziak, J., Parys, P., Rosinski, M., Ryc, L., & Wolowskim, J. (2008). Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities. Laser Part. Beams 26, 555565.Google Scholar
Masnavi, M., Nakajima, M., Sasaki, A., Hotta, E. & Horioka, K. (2006). Potential of discharge-based lithium plasma as an extreme ultraviolet source. Appl. Phys. Lett. 89, 031503–1/031503–3.Google Scholar
Nardi, E., Maron, Y. & Hoffmann, D.H.H. (2009). Dynamic screening and charge state of fast ions in plasma and solids. Laser Part. Beams, 27, 355361.Google Scholar
Rafique, M.S., Khaleeq-Ur-Rahman, M., Riaz, I., Jalil, R. & Farid, N. (2008). External magnetic field effect on plume images and X-ray emission from a nanosecond laser produced plasma. Laser Part. Beams, 26, 217224.Google Scholar
Schultze, V. & Wagner, M. (1991). Blow-off of aluminum films. Appl. Phys. A 53, 241248.Google Scholar
Singh, R.K. & Narayan, J. (1990). Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B 41, 88438859.Google Scholar
Singh, R.K., Kumar, Ajai., Patel, B.G. & Subramanian, K.P. (2007). Role of ambient gas and laser fluence in governing the dynamics of the plasma plumes produced by laser blow off of LiF–C thin film. J. Appl. Phys. 101, 103301–1/103301–9.Google Scholar
Sizyuk, V., Hassanein, A. & Sizyuk, T. (2007). Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications. Laser Part. Beams 25, 143154.Google Scholar
Veiko, V.P., Shakhno, E.A., Smirnov, V.N., Miaskovski, A.M. & Nikishin, G.D. (2006). Laser – induced film deposition by LIFT: Physical mechanisms and applications. Laser Part. Beams 24, 203209.Google Scholar
Wang, Y-L., Xu, W., Zhou, Y., Chu, L-Z. & Fu, G-S. (2007). Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablation. Laser Part. Beams 25, 913.Google Scholar
Wolowski, J., Badziak, J., Czarnecka, A., Parys, P., Pisarek, M., Rosinski, M., Turan, R. & Yerci, S. (2007). Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites. Laser Part. Beams 25, 6569.Google Scholar