Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-14T21:30:40.677Z Has data issue: false hasContentIssue false

Optimum laser parameters for 1D radiation pressure acceleration

Published online by Cambridge University Press:  30 April 2015

Peter Schmidt*
TU-Darmstadt, TEMF, Darmstadt, Germany
Oliver Boine-Frankenheim
TU-Darmstadt, TEMF, Darmstadt, Germany
Peter Mulser
TU-Darmstadt, FKP, Darmstadt, Germany
Address correspondence and reprint requests to: Peter Schmidt, TU-Darmstadt, TEMF, Schlossgartenstraße 8, 64289 Darmstadt, Germany. E-mail:


Laser ion acceleration (Wilks et al., 2001; Passoni et al., 2010) has become an interesting field of research in the past years. Several experiments, such as LIGHT (Schollmeier et al., 2008; Bagnoud et al., 2010; Busold et al., 2013; 2014a; 2014b) are performed worldwide. High intense, pulsed laser beams are used to generate and accelerate a plasma. For higher laser intensities (>1021 W cm−1), simulations (Esirkepov et al., 2004; Macchi et al., 2005; 2009; 2010; Robinson et al., 2008; Rykovanov et al., 2008; Henig et al., 2009; Schlegel et al., 2009; Shoucri et al., 2011; 2013; 2014; Kar et al., 2012; Korzhimanov et al., 2012; Shoucri, 2012) have revealed a new acceleration mechanism: The Radiation Pressure Acceleration. The entire foil target is accelerated by the radiation pressure of the laser pulse. Ideally, a sharp peak spectrum is generated, with energies up to GeV and nearly solid body density. This work faces on a detailed analysis of the acceleration mechanism in order to develop the optimum laser- and target parameters for the process. The analysis is supported by one-dimensional PIC simulations, using the commercial code VSim© Tech-X (2015).

Research Article
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Aurand, B., Kuschel, S., Jäckel, O., Rödel, C., Zhao, H.Y., Herzer, S., Paz, A.E., Bierbach, J., Polz, J., Elkin, B., Paulus, G.G., Karmakar, A., Gibbon, P., Kuehl, T. & Kaluza, M.C. (2013). Radiation pressure-assisted acceleration of ions using multi-component foils in high-intensity laser–matter interactions. New J. Phys. 15, 033031.CrossRefGoogle Scholar
Bagnoud, V., Aurand, B., Blazevic, A., Borneis, S., Bruske, C., Ecker, B., Eisenbarth, U., Fils, J., Frank, A., Gaul, E., Goette, S., Haefner, C., Hahn, T., Harres, K., Heuck, H.M., Hochhaus, D., Hoffmann, D.H.H., Javorková, D., Kluge, H.J., Kuehl, T., Kunzer, S., Kreutz, M., Merz-Mantwill, T., Neumayer, P., Onkels, E., Reemts, D., Rosmej, O., Roth, M., Stoehlker, T., Tauschwitz, A., Zielbauer, B., Zimmer, D. & Witte, K. (2010). Commissioning and early experiments of the PHELIX facility. Appl. Phys. B: Lasers Opt. 100, 137150.CrossRefGoogle Scholar
Boyd, T., Sanderson, J. & Zita, E. (2006). The Physics of Plasmas, vol. 74. New York: Cambridge University Press.Google Scholar
Busold, S., Almomani, A., Bagnoud, V., Barth, W., Bedacht, S., Blažević, A., Boine-Frankenheim, O., Brabetz, C., Burris-Mog, T., Cowan, T.E., Deppert, O., Droba, M., Eickhoff, H., Eisenbarth, U., Harres, K., Hoffmeister, G., Hofmann, I., Jaeckel, O., Jaeger, R., Joost, M., Kraft, S., Kroll, F., Kaluza, M., Kester, O., Lecz, Z., Merz, T., Nürnberg, F., Al-Omari, H., Orzhekhovskaya, A., Paulus, G., Polz, J., Ratzinger, U., Roth, M., Schaumann, G., Schmidt, P., Schramm, U., Schreiber, G., Schumacher, D., Stoehlker, T., Tauschwitz, A., Vinzenz, W., Wagner, F., Yaramyshev, S. & Zielbauer, B. (2014a). Shaping laser accelerated ions for future applications – the LIGHT collaboration. Nucl. Instr. Methods Phys. Res. A 740, 9498.CrossRefGoogle Scholar
Busold, S., Schumacher, D., Deppert, O., Brabetz, C., Frydrych, S., Kroll, F., Joost, M., Al-Omari, H., Blažević, a., Zielbauer, B., Hofmann, I., Bagnoud, V., Cowan, T.E. & Roth, M. (2013). Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source. Phys. Rev. ST – Accel. Beams 16, 101302.CrossRefGoogle Scholar
Busold, S., Schumacher, D., Deppert, O., Brabetz, C., Kroll, F., Blažević, A., Bagnoud, V. & Roth, M. (2014b). Commissioning of a compact laser-based proton beam line for high intensity bunches around 10 MeV. Phys. Rev. ST – Accel. Beams 17, 031302.CrossRefGoogle Scholar
Ceccotti, T., Lévy, A., Réau, F., Popescu, H., Monot, P., Lefebvre, E. & Martin, P. (2008). TNSA in the ultra-high contrast regime. Plasma Phys. Contr. Fusion 50, 124006.CrossRefGoogle Scholar
Dendy, R.O. (1990). Plasma Dynamics. New York: Oxford University Press.CrossRefGoogle Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003.CrossRefGoogle ScholarPubMed
Fliessbach, T. (2012). Allgemeine Relativitätstheorie. Heidelberg: Spektrum Akademischer Verlag.CrossRefGoogle Scholar
Henig, A., Steinke, S., Schnürer, M., Sokollik, T., Hörlein, R., Kiefer, D., Jung, D., Schreiber, J., Hegelich, B.M., Yan, X.Q., Meyer-Ter-Vehn, J., Tajima, T., Nickles, P.V., Sandner, W. & Habs, D. (2009). Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003.CrossRefGoogle ScholarPubMed
Kar, S., Kakolee, K.F., Qiao, B., Macchi, A., Cerchez, M., Doria, D., Geissler, M., Mckenna, P., Neely, D., Osterholz, J., Prasad, R., Quinn, K., Ramakrishna, B., Sarri, G., Willi, O., Yuan, X.Y., Zepf, M. & Borghesi, M. (2012). Ion acceleration in multispecies targets driven by intense laser radiation pressure. Phys. Rev. Lett. 109, 185006.CrossRefGoogle ScholarPubMed
Kegel, W.H. (1998). Plasmaphysik. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Kim, I.J., Pae, K.H., Kim, C.M., Kim, H.T., Lee, C.L., Choi, I.W., Singhal, H., Sung, J.H., Lee, S.K., Lee, H.W., Nickles, P.V. & Nam, T.M.J.C.H. (2014). New frontier of laser particle acceleration: Deriving protons to 80 MeV by radiation pressure. arXiv:1411.5734 [physics.plasm-ph].Google Scholar
Korzhimanov, A.V., Efimenko, E.S., Golubev, S.V. & Kim, A.V. (2012). Generating high-energy highly charged ion beams from petawatt-class laser interactions with compound targets. Phys. Rev. Lett. 109, 245008.CrossRefGoogle ScholarPubMed
Lécz, Z., Boine-Frankenheim, O. & Kornilov, V. (2013). Target normal sheath acceleration for arbitrary proton layer thickness. Nucl. Instrum. Meth A 727, 5158.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornolti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003.CrossRefGoogle ScholarPubMed
Macchi, A., Veghini, S., Liseykina, T.V. & Pegoraro, F. (2010). Radiation pressure acceleration of ultrathin foils. New J. Phys. 12, 045013.CrossRefGoogle Scholar
Macchi, A., Veghini, S. & Pegoraro, F. (2009). “light sail” acceleration reexamined. Phys. Rev. Lett. 103, 085003.CrossRefGoogle ScholarPubMed
Mora, P. (2006). Thin-foil expansion into a vacuum. AIP Conference Proceedings, vol. 827, pp. 227236.CrossRefGoogle Scholar
Mulser, P. & Bauer, D. (2010). High Power Laser-Matter Interaction, vol. 238. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Passoni, M., Bertagna, L. & Zani, A. (2010). Target normal sheath acceleration: Theory, comparison with experiments and future perspectives. New J. Phys. 12, 045012.CrossRefGoogle Scholar
Rebhan, E. (2012). Theoretische Physik: Relativitätstheorie und Kosmologie. Berlin, Heidelberg: Springer-Verlag. URL Scholar
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 013021.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Roth, M., Jung, D., Falk, K., Guler, N., Deppert, O., Devlin, M., Favalli, A., Fernandez, J., Gautier, D., Geissel, M., Haight, R., Hamilton, C.E., Hegelich, B.M., Johnson, R.P., Merrill, F., Schaumann, G., Schoenberg, K., Schollmeier, M., Shimada, T., Taddeucci, T., Tybo, J.L., Wagner, F., Wender, S.A., Wilde, C.H. & Wurden, G.A. (2013). Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110, 044802.CrossRefGoogle ScholarPubMed
Rykovanov, S.G., Schreiber, J., Meyer-ter Vehn, J., Bellei, C., Henig, A., Wu, H.C. & Geissler, M. (2008). Ion acceleration with ultra-thin foils using elliptically polarized laser pulses. New J. Phys. 10, 113005.CrossRefGoogle Scholar
Schlegel, T., Naumova, N., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses. Phys. Plasmas 16, 083103.CrossRefGoogle Scholar
Schollmeier, M., Becker, S., Geissel, M., Flippo, K.a., Blaević, a., Gaillard, S.a., Gautier, D.C., Grüner, F., Harres, K., Kimmel, M., Nürnberg, F., Rambo, P., Schramm, U., Schreiber, J., Schütrumpf, J., Schwarz, J., Tahir, N.A., Atherton, B., Habs, D., Hegelich, B.M. & Roth, M. (2008). Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices. Phys. Rev. Lett. 101, 055004.CrossRefGoogle ScholarPubMed
Shoucri, M. (2012). Ion acceleration and plasma jet formation in the interaction of an intense laser beam normally incident on an overdense plasma: A Vlasov code simulation. Comput. Sci. Discov. 5, 014005.CrossRefGoogle Scholar
Shoucri, M., Lavocat-Dubuis, X., Matte, J.P. & Vidal, F. (2011). Numerical study of ion acceleration and plasma jet formation in the interaction of an intense laser beam normally incident on an overdense plasma. Laser Part. Beams 29, 315332.CrossRefGoogle Scholar
Shoucri, M., Matte, J.P. & Vidal, F. (2013). Ion acceleration and plasma jets driven by a high intensity laser beam normally incident on thin foils. Laser Part. Beams 31, 613625.CrossRefGoogle Scholar
Shoucri, M., Matte, J.P. & Vidal, F. (2014). Vlasov simulation of ion acceleration by an intense laser beam normally incident on a thin target*. Eur. Phys. J. D 68, 257.CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, I.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle ScholarPubMed
Strauss, W.A. (1995). Partielle Differentialgleichungen. Wiesbaden: Springer Fachmedien.CrossRefGoogle Scholar
Tech-X (2015). VSim. Website. Scholar
Whitham, G.B. (1974). Linear and Nonlinear Waves. New York: Wiley.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar