Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T03:21:17.445Z Has data issue: false hasContentIssue false

Plasma evolution in laser-irradiated hollow microcylinders

Published online by Cambridge University Press:  09 March 2009

J. E. Balmer
Affiliation:
Institute of Applied Physics, University of Bern, CH-3012 Bern, Switzerland
R. Weber
Affiliation:
Institute of Applied Physics, University of Bern, CH-3012 Bern, Switzerland
P. F. Cunningham
Affiliation:
Institute of Applied Physics, University of Bern, CH-3012 Bern, Switzerland
P. Lädrach
Affiliation:
Institute of Applied Physics, University of Bern, CH-3012 Bern, Switzerland

Abstract

Hollow microcylinder targets, 200–300 μm in diameter, have been internally irradiated at up to 5 · 1014 W/cm2 with Nd:glass laser pulses directed through an axial entrance slit. The plasma evolution in the interior of the cavities was diagnosed with a pinhole imaging X-ray streak camera and a Nomarski-type interferometer. Plasma collision near the center of the cylinder is observed about 300 ps after the irradiating laser pulse. The experimental results are confirmed by a one-dimensional Eulerian fluid code.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmer, J. E. & Weber, R. 1988 Helv. Phys. Acta 61, 132.Google Scholar
Benattar, R., Popovics, C. & Sigel, R. 1979 Rev. Sci. Instrum. 50, 1583.CrossRefGoogle Scholar
Cunningham, P. F. et al. 1988 Opt. Commun. 68, 412.CrossRefGoogle Scholar
Garban-Labaune, C., et al. 1982 Phys. Rev. Lett. 48, 1018.CrossRefGoogle Scholar
Hagelstein, P. L. 1983 Plasma Physics 25, 1345.CrossRefGoogle Scholar
Jacoby, D. et al. 1982 J. Phys. B 15, 3557.Google Scholar
Jaegle, P. et al. 1986 Europhys. Lett. 1, 555.CrossRefGoogle Scholar
Kogelnik, H. 1965 Appl. Opt. 4, 1562.CrossRefGoogle Scholar
London, R. A. 1988 Phys. Fluids 31, 184.CrossRefGoogle Scholar
Lunney, J. G. 1986 Appl. Phys. Lett. 48, 891.CrossRefGoogle Scholar
Matthews, D. L. et al. 1985 Phys. Rev. Lett. 54, 110.CrossRefGoogle Scholar
McWhirter, R. W. P. 1965 Plasma Diagnostic Techniques, Huddlestone, R. H. and Leonard, S. L. eds. (Academic Press, New York), p. 201.Google Scholar
Milchberg, H. et al. 1985 Appl. Phys. Lett. 47, 1151.CrossRefGoogle Scholar
Mora, P. 1982 Phys. Fluids 25, 1051.CrossRefGoogle Scholar
Rosen, M. D. & Hagelstein, P. L. 1986 Lawrence Livermore National Laboratory Report UCRL-94412.Google Scholar
Seely, J. F. et al. 1985 Opt. Commun. 54, 289.CrossRefGoogle Scholar
Suckewer, S. et al. 1985 Phys. Rev. Lett. 55, 1753.CrossRefGoogle Scholar
Weber, R., Cunningham, P. F. & Balmer, J. E. 1988 Appl. Phys. Lett. 53, 2596.CrossRefGoogle Scholar