Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-16T14:44:33.576Z Has data issue: false hasContentIssue false

Prospects of high energy density physics research using the CERN super proton synchrotron (SPS)

Published online by Cambridge University Press:  17 December 2007

N.A. Tahir*
Affiliation:
Gesellschaft für Schwerionenforschung Darmstadt, Darmstadt, Germany
R. Schmidt
Affiliation:
CERN-AB, Geneva, Switzerland
M. Brugger
Affiliation:
CERN-AB, Geneva, Switzerland
I.V. Lomonosov
Affiliation:
Institute for Problems of Chemical Physics, Chernogolovka, Russia
A. Shutov
Affiliation:
Institute for Problems of Chemical Physics, Chernogolovka, Russia
A.R. Piriz
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
S. Udrea
Affiliation:
Institut für Kernphysik, Technische Universität Darmstadt and Gesellschaft für Schwerionenforschung Darmstadt, Darmstadt, Germany
D.H.H. Hoffmann
Affiliation:
Institut für Kernphysik, Technische Universität Darmstadt and Gesellschaft für Schwerionenforschung Darmstadt, Darmstadt, Germany
C. Deutsch
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Universite Paris-Sud, Orsay, France
*
Address correspondence and reprint requests to: N. A. Tahir, Gesellschaft für Schwerionenforschung Darmstadt, Planckstrasse 1, 64291 Darmstadt, Germany. E-mail: n.tahir@gsi.de

Abstract

The Super Proton Synchrotron (SPS) will serve as an injector to the Large Hadron Collider (LHC) at CERN as well as it is used to accelerate and extract proton beams for fixed target experiments. In either case, safety of operation is a very important issue that needs to be carefully addressed. This paper presents detailed numerical simulations of the thermodynamic and hydrodynamic response of solid targets made of copper and tungsten that experience impact of a full SPS beam comprized of 288 bunches of 450 GeV/c protons. These simulations have shown that the material will be seriously damaged if such an accident happens. An interesting outcome of this work is that the SPS can be used to carry out dedicated experiments to study High Energy Density (HED) states in matter.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bushman, A.V., Kanel, G.I., Ni, A.L. & Fortov, V.E. (1993). Thermophysics and Dynamics of Intense Pulsed Loadings. London: Taylor and Francis.Google Scholar
Fasso, A., Ferrari, A., Roesler, S., Sala, P.R., Battistoni, G., Cerutti, F., Gadioli, E., Garzelli, M.V., Ballarini, F., Ottolenghi, A., Empl, A. & Ranft, J. (2003). The physics models of FLUKA: Status and recent developments. http://arxiv.org/PS_cache/hep-ph/pdf/0306/0306267v1.pdf.Google Scholar
Fasso, A., Ferrari, A., Ranft, J. & Sala, P.R. (2005). FLUKA: A multiparticle transport code. http://aliceinfo.cern.ch/alicvs/viewvc/doc/fluka.slac-r-773.pdf?revision=1.2.Google Scholar
Fortov, V.E., Goel, B., Munz, C.-D., Ni, A.L., Shutov, A. & Vorbiev, O.Yu. (1996). Numerical simulations of non-stationary fronts and interfaces by the Godunov method in m oving grids. Nucl. Sci. Eng. 123, 169.Google Scholar
Fortov, V.E. & Yakubov, I.T. (1999). Physics of Non-Ideal Plasmas. London: World Science Publishers.Google Scholar
Goddard, B., Kain, V., Uythoven, J. & Wenninger, J. (2004). TT40 damage during 2004 high intensity SPS extraction. CERN-AB-Note-2005-014, Geneva.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives of high energy density physics with intense ions and laser beams. Laser Part. Beams 23, 47.Google Scholar
Kain, V., Vorderwinkler, K.Ramillon, J., Schmidt, R. & Wenninger, J. (2005). Material damage test with 450 GeV LHC-type beam. http://accelconf.web.cern.ch/accelconf/p05/papers/rppe018.pdf.Google Scholar
Lomonosov, I.V. (2007). Multi-phase equation of state for aluminum. Laser Part. Beams 25, 567584.Google Scholar
Lopez Cela, J.J., Piriz, A.R., Serena Moreno, M. & Tahir, N.A. (2006). Numerical simulations of Rayleigh–Taylor instability in elastic solids. Laser Part. Beams 24, 427.CrossRefGoogle Scholar
Piriz, A.R., Portugues, R.F., Tahir, N.A. & Hofmann, D.H.H. (2002). Implosion of multilayered cylindrical targets driven by intense heavy ion beams. Phys. Rev. E. 66, 056403.Google Scholar
Piriz, A.R., Temporal, M., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2003 a). Symmetry analysis of cylindrical implosions driven by high-frequency rotating ion beams. Plasma Phys. Contr. Fusion 45, 1733.CrossRefGoogle Scholar
Piriz, A.R., Tahir, N.A., Hoffmann, D.H.H. & Temporal, M. (2003 b). Generation of hollow ion beam: calculation of rotation frequency required to accommodate symmetry constraints. Phys. Rev. E. 67, 017501.Google Scholar
Piriz, A.R., Lopez Cela, J.J., Cortazar, O.D., Tahir, N.A. & Hoffmann, D.H.H. (2005). Rayleigh-Taylor instability in elastic solids. Phys. Rev. E. 72, 056313.Google Scholar
Piriz, A.R., Lopez Cela, J.J., Serena Moreno, M., Tahir, N.A. & Hoffmann, D.H.H. (2006). Thin plate effects in the Rayleigh-Taylor instability of elastic solids. Laser Part. Beams 24, 275.CrossRefGoogle Scholar
Piriz, A.R., Tahir, N.A., Lopez Cela, J.J., Cortazar, O.D., Serna Moreno, M.C., Temporal, M. & Hoffmann, D.H.H. (2007 a). Analytic models for the design of the LAPLAS target. Contrib. Plasma Phys. 47, 213.Google Scholar
Piriz, A.R., Lopez Cela, J.J., Serna Moreno, M.C., Cortazar, O.D., Tahir, N.A. & Hoffmann, D.H.H. (2007 b). A new approach to Rayleigh–Taylor instability: Applications to accelerated elastic solids. Nucl. Instrum. Meth. Phys. Res. A. 577, 250.Google Scholar
Ray, A., Srivastava, M.K., Kodayya, G. & Menon, S.V.G. (2006). Improved equation of state of metals in the liquid-vapor region. Laser Part. Beams 24, 437.Google Scholar
Tahir, N.A., Hoffmann, D.H.H., Maruhn, J.A., Spiller, P. & Bock, R. (1999). Heavy ion induced hydrodynamic effects in solid targets. Phys. Rev. E. 60, 4715.CrossRefGoogle ScholarPubMed
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000 a). Shock compression of condensed matter using intense beams of energetic heavy ions. Phys. Rev. E. 61, 1975.Google Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000 b). Equation-of-state properties of high-energy-density matter using intense heavy ion beams with an annular focal spot. Phys. Rev. E. 62, 1224.CrossRefGoogle ScholarPubMed
Tahir, N.A., Kozyreva, SPiller, P., Hoffmann, D.H.H. & Shutov, A. (2001 a). Necessity of bunch compression for heavy-ion-induced hydrodynamics and studies of beam fragmentation in solid targets at a proposed synchrotron facility. Phys. Rev. E. 63, 036407.Google Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Tauschwitz, A., Shutov, A., Maruhn, J.A., Spiller, P., Nuener, U., Jacoby, J., Roth, M., Bock, R., Juranek, H. & Redmer, R. (2001 b). Metallization of hydrogen using heavy-ion-beam implosion of multi-layered targets. Phys. Rev. E. 63, 016402.Google Scholar
Tahir, N.A., Juranek, H., Shutov, A., Redmer, R., Piriz, A.R., Temporal, M., Varentsov, D., Udrea, S., Hoffmann, D.H.H., Deutsch, C., Lomonosov, I. & Fortov, V.E. (2003 a). Influence of the equation of state on the compression and heating of hydrogen. Phys. Rev. B. 67, 184101.Google Scholar
Tahir, N.A., Shutov, A., Varentsov, D., Spiller, P., Udrea, S., Hoffmann, D.H.H., Lomonosov, I.V., Wieser, J., Kirk, M., Piriz, R., Fortov, V.E. & Bock, R. (2003 b). Influence of the equation of state of matter and ion beam charesteristics on target heating and compression. Phys. Rev. Spec. Topics Accel. Beams 6, 020101.Google Scholar
Tahir, N.A., Goddard, B., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 a). Impact of 7-Tev/c large hadron collider proton beam on a copper target. J. Appl. Phys. 97, 083532.CrossRefGoogle Scholar
Tahir, N.A., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 b). The CERN large hadron collider as a tool to study high-energy-density physics. Phys. Rev. Lett. 94, 135004.Google Scholar
Tahir, N.A., Adonin, A., Deutsch, C., Fortov, V.E., Grandjouan, N., Geil, B., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 c). Studies of heavy ion-induced highenergy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility. Nucl. Instrum. Meth. Phys. Res. A. 544, 16.Google Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 d). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.Google Scholar
Tahir, N.A., Spiller, P., Udrea, S., Cortazar, O.D., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Lomonosov, I.V., Ni, P., Piriz, A.R., Shutov, A., Temporal, M. & Varentsov, D. (2006). Studies of equation-of-state properties of high-energy density matter using intense heavy ion beams at the future FAIR facility: The HEDgeHOB Collaboration. Nucl. Instrum. Meth. Phys. Res. B. 245, 85.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Wouchuk, G., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 a). HEDgeHOB: High-energydensity matter generated by heavy ion beams at the future facility for antiprotons and ion research. Nucl. Instrum. Meth. Phys. Res. A. 577, 238.CrossRefGoogle Scholar
Tahir, N.A., Piriz, A.R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Wouchuk, G., Deutsch, C., Spiller, P., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 b). Survey of theoretical work for the proposed HEDgeHOB collaboration: HIHEX and LAPLAS. Contrib. Plasma Phys. 47, 223.Google Scholar
Tahir, N.A., Kim, V., Grigoriev, D.A., Piriz, A.R., Weick, H., Geissel, H. & Hoffmann, D.H.H. (2007 c). High energy density physics problems related to liquid jet lithium target for Super-FRS fast extraction scheme. Laser Part. Beams 25, 295.Google Scholar
Temporal, M., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2003). Numerical analysis of a multilayered cylindrical target compression driven by a rotating intense heavy ion beam. Laser Part. Beams 21, 609.Google Scholar
Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindricalhydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137.Google Scholar