Skip to main content Accessibility help

Advances in the investigation of shock-induced reflectivity of porous carbon

  • Dimitri Batani (a1), Stefano Paleari (a2), Tommaso Vinci (a3), Roberto Benocci (a1), Keisuke Shigemori (a4), Yoichiro Hironaka (a4), Toshihiko Kadono (a4) and Akiyuki Shiroshita (a4)...


We studied the behavior of porous carbon compressed by laser-generated shock waves. In particular, we developed a new design for targets, optimized for the investigation of carbon reflectivity at hundred-GPa pressures and eV/k temperatures. Specially designed “two-layer-two materials” targets, comprising porous carbon on transparent substrates, allowed the probing of carbon reflectivity and a quite accurate determination of the position in the P, T plane. This was achieved by the simultaneous measurement of shock breakout times, sample temperature (by optical pyrometry) and uid velocity. The experiments proved the new scheme is reliable and appropriate for reflectivity measurements of thermodynamical states lying out of the standard graphite or diamond hugoniot. An increase of reflectivity in carbon has been observed at 260 GPa and 14,000 K while no increase in reflectivity is found at 200 GPa and 20,000 K. We also discuss the role of numerical simulations in the optimization of target parameters and in clarifying shock dynamics.


Corresponding author

Address correspondence and reprint requests to: Dimitri Batani, Centre Lasers Intenses et Applications, Universit_e Bordeaux 1, Cours de la Liberation 351, 33405 Talence cedex, France. E-mail:


Hide All
Ancilotto, F., Chiarotti, G. L., Scandolo, S. & Tosatti, E. (1997). Dissociation of methane into hydrocarbons at extreme (planetary) pressure and temperature. Sci. 275, 12881290.
Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.
Batani, D., Stabile, H., Ravasio, A., Lucchini, G., Strati, F., Ullschmied, J., Krousky, E., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A., Nishimura, H., Ochi, Y., Kilpio, A., Shashkov, E., Stuchebrukhov, I., V, V. & I, K. (2003). Shock pressure induced by 0.44 µm laser radiation on aluminum targets. Laser Part. Beams 21, 481487.
Batani, D., Strati, F., Stabile, H., Tomasini, M., Lucchini, G., Ravasio, A., Koenig, M., Benuzzi-Mounaix, A., Nishimura, H., Ochi, Y., Ullschmied, J., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A., Hall, T., Milani, P., Barborini, E. & Piseri, P. (2004). Hugoniot data for carbon at megabar pressures. Phys. Rev. Lett. 92, 065503.
Biener, J., Ho, D. D., Wild, C., Woerner, E., Biener, M. M., El-dasher, B. S., Hicks, D. G., Eggert, J. H., Celliers, P. M., Collins, G. W., Teslich, N.E. J., Kozioziemski, B. J., Haan, S. W. & Hamza, A. V. (2009). Diamond spheres for inertial confinement fusion. Nucl. Fusion 49, 112001.
Bradley, D. K., Eggert, J. H., Smith, R. F., Prisbrey, S. T., Hicks, D. G., Braun, D. G., Biener, J., Hamza, A. V., Rudd, R. E. & Collins, G. W. (2009). Diamond at 800 GPa. Phys. Rev. Lett. 102, 075503.
Bundy, F., Bassett, W., Weathers, M., Hemley, R., Mao, H. & Goncharov, A. (1996). The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141153.
Clérouin, J., Laudernet, Y., Recoules, V. & Mazevet, S. (2006). Ab initio study of optical properties of shock compressed silica and lithium fluoride. J. Phys. A 39, 43874391.
Correa, A. A., Bonev, S. A. & Galli, G. (2006). Carbon under extreme conditions: Phase boundaries and electronic properties from _rst-principles theory. Proceedings of the Shock-induced carbon reflectivity National Academy of Sciences of the United States of America 103, 1204{1208.
Das, M. & Menon, S. (2009). Effects of bound electrons and radiation on shock Hugoniot. Phys. Rev. B 79, 045126.
Driver, K. & Militzer, B. (2012). All-Electron Path Integral Monte Carlo Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas. Phys. Rev. Lett. 108, 115502.
Eggert, J. H., Hicks, D. G., Celliers, P. M., Bradley, D. K., McWilliams, R. S., Jeanloz, R., Miller, J. E., Boehly, T. R. & Collins, G. W. (2009). Melting temperature of diamond at ultrahigh pressure. Nat. Phys. 6, 4043.
Fujioka, S., Zhang, Z., Yamamoto, N., Ohira, S., Fujii, Y., Ishihara, K., Johzaki, T., Sunahara, A., Arikawa, Y., Shigemori, K., Hironaka, Y., Sakawa, Y., Nakata, Y., Kawanaka, J., Nagatomo, H., Shiraga, H., Miyanaga, N., Norimatsu, T., Nishimura, H. & Azechi, H. (2012). High-energy-density plasmas generation on GEKKO-LFEX laser facility for fast-ignition laser fusion studies and laboratory astrophysics. Plasma Phys. Control. Fusion 54, 124042.
Grumbach, M. & Martin, R. (1996). Phase diagram of carbon at high pressures and temperatures. Phys. Rev. B 54, 1573015741.
Guillot, T. (1999). Interiors of Giant Planets Inside and Outside the Solar System. Sci. 286, 7277.
Gust, W. (1980). Phase transition and shock-compression parameters to 120 GPa for three types of graphite and for amorphous carbon. Phys. Rev. B 22, 47444756.
Hicks, D. G., Boehly, T. R., Celliers, P. M., Bradley, D. K., Eggert, J. H., McWilliams, R. S., Jeanloz, R. & Collins, G. W. (2008). High-precision measurements of the diamond Hugoniot in and above the melt region. Phys. Rev. B 78, 174102.
Hicks, D. G., Boehly, T. R., Celliers, P. M., Eggert, J. H., Vianello, E., Meyerhofer, D. D. & Collins, G. W. (2005). Shock compression of quartz in the high-pressure fluid regime. Phys. Plasmas 12, 082702.
Kemp, A. J. & Meyer-ter Vehn, J. (1998). An equation of state code for hot dense matter, based on the QEOS description. Nucl. Instr. Meth. Phys. Res. A 415, 674676.
LA-UR-92-3407 (1992). Sesame: The lanl equation of state database. Los Alamos: Los Alamos National Laboratory.
Milani, P., Piseri, P., Barborini, E., Podesta, A. & Lenardi, C. (2001). Cluster beam synthesis of nanostructured thin films. J. Vacu. Sci. & Techn. A 19, 20252033.
Miyanaga, N., Nakatsuka, M., Azechi, H., Shiraga, H., Kanabe, T., Asahara, H., Daido, H., Fujita, H. & Fujita, K. (2001). The GEKKO XII-HIPER (High Intensity Plasma Experimental Research) System Relevant to Ignition Targets. 18th IAEA International Conference on Fusion Energy. Sorrento, Italy.
More, R. M., Warren, K. H., Young, D. A. & Zimmerman, G. B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.
Nellis, W., Ross, M. & Holmes, N. (1995). Temperature measurements of shock-compressed liquid hydrogen: Implications for the interior of Jupiter. Sci. 574, 12491252.
Nissim, N., Eliezer, S., Werdiger, M. & Perelmutter, L. (2012). Approaching the cold curve in laser-driven shock wave experiment of a matter precompressed by a partially perforated diamond anvil. Laser Part. Beams XX, 17.
Ozaki, N., Tanaka, K. A., Ono, T., Shigemori, K., Nakai, M., Azechi, H., Yamanaka, T., Wakabayashi, K., Yoshida, M., Nagao, H. & Kondo, K. (2004). GEKKO/HIPER-driven shock waves and equation-of-state measurements at ultrahigh pressures. Phys. Plasmas 11, 16001608.
Paleari, S., Batani, D., Vinci, T, Benocci, R., Shigemori, K., Hironaka, Y., Kadono, T., Shiroshita, A., Piseri, P., Bellucci, S., Mangione, A. & Aliverdiev, A. (2013). A new target design for laser shock-compression studies of carbon reflectivity in the megabar regime. Euro. Phys. J. D (in press).
Ramis, R., Schmalz, R. & Meyer-Ter-Vehn, J. (1988). MULTI - A computer code for one-dimensional multigroup radiation hydrodynamics. Compu. Phys. Commun. 49, 475505.
Romero, N. & Mattson, W. (2007). Density-functional calculation of the shock Hugoniot for diamond. Phys. Rev. B 76, 214113.
Ross, M. (1981). The ice layer in Uranus and Neptune—diamonds in the sky? Nat. 292, 435436.
Setchell, R. E. (2002). Refractive index of sapphire at 532 nm under shock compression and release. J. Appl. Phys. 91, 28332841.
Shigemori, K., Otani, K., Shiota, T., Azechi, H. & Mima, K. (2006). Shock pyrometry of laser-irradiated foils below 1 eV. Jpn J. Appl. Phys. 45, 42244226.
Thiel, M. V. & Ree, F. (1993). High-pressure liquid-liquid phase change in carbon. Phys. Rev. B 48, 35913599.
Togaya, M. (1997). Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid carbon. Phys. Rev. Lett. 79, 24742477.
Tomasini, M. (2001). Studio dell'equazione di stato del ferro e del carbonio a pressioni dell'ordine dei Mbar generate da shock indotti da laser (English translation here). Master's thesis, Universitaé degliStudi di Milano.
Wang, Y., Liu, Z.-K., Chen, L.-Q., Burakovsky, L., Preston, D., Luo, W., Johansson, B. & Ahuja, R. (2005). Mean-field potential calculations of shock-compressed porous carbon. Phys. Rev. B 71, 054110.
Wang, X., Scandolo, S., Car, R., Burakovsky, L., Preston, D., Luo, W., Johansson, B. & Ahuja, R. (2005). Carbon phase diagram from ab initio molecular dynamics. Phys. Rev. Lett. 95, 185701.
Yamanaka, C. (1999). Inertial fusion research over the past 30 years. Fusion Engin. Des. 44, 112.
Zvorykin, V., Bakaev, V., Lebo, I. & Sychugov, G. (2004). Hydrodynamics of plasma and shock waves generated by the high-power GARPUN KrF laser. Laser Part. Beams 22, 5157.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed