Skip to main content

Application of high speed frame camera on the intense electron beam accelerator: An overview

  • Xin-Bing Cheng (a1), Jin-Liang Liu (a1) and Bao-Liang Qian (a1)

High speed framing camera (HSFC) could be used to capture the image of the electron beams generated by the intense electron-beam accelerator (IEBA), and it is useful to visualize the evolution of discharging and plasma generation phenomenon. So an overview of the application of HSFC on the IEBA is presented. First, we introduce the synchronization problem of HSFC and IEBA, and a synchronization trigger system which could provide a trigger signal with rise time of 17 ns and amplitude of about 5 V is presented. Second, an imaging system based on IEBA, HSFC, and the synchronization trigger system is developed, and it can be used to image the developmental process of plasma in the output vacuum chamber of IEBA and to measure the electrical parameter of IEBA and electrical trigger signal in real time. Furthermore, the imaging system is used to investigate the developmental process of the electron beam of the A-K gap in vacuum under 180 nanosecond quasi-square pulses. It is obtained that the short A-K gap is closed prematurely under long pulse operation with plasma expansion velocity of about 6.25 cm/µs and the light emission in the A-K gap region has the characteristics of “re-ignition” with light duration time about 3800 ns. At last, the discharging process of surface flashover channel of poly-methyl methacrylate (PMMA) insulator with gap spacing of 170 mm in vacuum under nanosecond quasi-square pulses is studied by the imaging system, and the change of luminosity is analyzed during the surface flashover process.

Corresponding author
Address correspondence and reprint requests to: Jin-Liang Liu, College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, Peoples Republic of China410073. E-mail:
Hide All
Apruzese J.P., Giuliani J.L.,Wolford M.F., Sethian J.D., Petrov G.M., Hinshelwood J.D., Myers M.C. & Ponce D.M. (2006). Experimental evidence for the role of Xe2+ pumping the Ar-Xe infrared laser. Appl. Phys. Lett. 88, 121120.
Cheng X.B., Liu J.L., Qian B.L., Chen Z. & Feng J.H. (2010). Research of a high current repetitive triggered spark gap switch and its application. IEEE Trans. Plasma Sci. 38, 1622.
Cheng X.B., Liu J.L., Hong Z.Q. & Qian B.L. (2012 a). Synchronization of high speed framing camera and intense electron-beam accelerator. Rev. Sci. Instrum. 83, 065104.
Cheng X.B., Liu J.L. & Qian B.L. (2012 b). Characteristics of long gap surface flashover channel in vacuum under nanosecond quasi-square pulses. Appl. Phys. Lett. 101, 08290.
Frank H., John L.G., John D.S., Matthew C.M., Patrick M.B. & Moshe F. (2008). Forced convective cooling of foils in a repetitively pulsed electron-beam diode. IEEE Trans. Plasma Sci. 36, 778793.
Friedman S., Limpaecher R. & Sirchis M. (1988). Compact energy storage using a modified-spiral PFL. In Power Modulator Symposium. New York: IEEE.
Katsuki S., Takano D., Namihira T. & Akiyama H. (2001). Repetitive operation of water-filled Blumlein generator. Rev. Sci. Intrum. 72, 27592763.
Koing J., Nolte S. & Tunnermann. (2005). Plasma evolution during metal ablation with ultrashort laser pulses. Opt. Express 13, 1059710607.
Kuai B., Wu G., Qiu A., Wang L., Cong P. & Wang X. (2009). Soft X-ray emissions from neon gas-puff Z-pinch powered by Qiang Guang-I accelerator. Laser Part. Beams 27, 569577.
Kumar R., Novac B.M., Sarkar P., Simith I.R. & Greenwood C. (2008). 300 kV Tesla transformer based pulse forming line generator. Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference. Las Vegas, NE, 246–249.
Laity G.R., Fierro A.S., Hatfield L.L., Dickens J.C. & Neuber A. (2011). Spatially resolved VUV spectral imaging of pulsed atmospheric flashover. IEEE Trans. Plasma Sci. 39, 21222123.
Li L.M., Wen J.C., Men T. & Liu Y.G. (2008). An intense-current electron beam source with low-level plasma formation. J. Phys. D: Appl. Phys. 41, 125201.
Liu J.L., Zhan T.W., Zhang J., Liu Z.X., Feng J.H., Shu T., Zhang J.D. & Wang X.X. (2007). A Tesla pulse transformer for spiral water pulse forming line charging. Laser Part. Beams 25, 305312.
Liu J.L., Cheng X.B., Qian B.L., Ge B., Zhang J.D. & Wang X.X. (2009). Study on strip spiral Blumlein line for the pulsed forming line of intense electron-beam accelerators. Laser Part. Beams 27, 95102.
Mark P., Brian J. & Anthony W. (2010). Three-dimensional digital image correlation technique using single high-speed camera for measuring large out-of-plane displacements at high framing rates. Appl. Opt. 49, 34183427.
Miller H.C. (1989). Surface flashover of insulators. IEEE Trans. Elect. Insul. 24, 765.
Miller R.B. (1998). Mechanism of explosive electron emission for dielectric fiber (velvet) cathodes. J. Appl. Phys. 84, 38803889.
Neuber A., Hemmert D., Dickens J., Krompholz H., Hatfield L. L. & Kristiansen M. (1999). Imaging of high-power microwave-induced surface flashover. IEEE Trans. Plasma Sci. 27, 138139.
Pai S.T. & Zhang Q. (1995). Introduction to High Power Pulse Technology. Singapore: World Scientific.
Robert J.B. & Edl S. (2001). High Power Microwave Sources and Technologies Beijing: Tsinghua University Press.
Roy A., Menon R., Mitra S., Kumar S., Sharma V., Nagesh K.V., Mittal K.C. & Chakravarthy D.P. (2009), Plasma expansion and fast gap closure in a high power electron beam diode. Phys. Plasmas 16, 053103.
Sampayan S.E., Gurbaxani S.H. & Buttram M.T. (1990). Plasma-cathode-initiated vacuum gap closure. J. Appl. Phys. 68, 2058.
Sethian J.D., Myers M., Smith I.D., Carboni V., Kishi J., Morton D., Pearce J., Bowen B., Schllitt L., Barr O. & Webster W. (2000). Pulsed power for a rep-rate, electron beam pumped KrF laser. IEEE Trans. Plasma Sci. 28 13331337.
Steven H.G. & Gregory S.N. (1997). Review of high-power microwave source research. Rev. Sci. Instrum. 68, 39453974.
Sun Z.W., Zhu J.J., Li Z.S., Alden M., Feipold F., Salewski M. & Kusano Y. (2013). Optical diagnostics of a gliding arc. Opt. Express 21, 60286044.
Tarasenko V.F., Shunailov S.A., Shpak V.G. & Kostyrya I.D. (2005). Super short electron beam from air filled diode at atmospheric pressure. Laser Part. Beams 23, 545551.
Tiwari N., Sahasrabudhe S.N., Tak A.K., Barve D.N. & Das A.K. (2012). Investigations of some aspects of the spray process in a single wire arc plasma spray system using high speed camera. Rev. Sci. Instrum. 83, 025110.
Walter J., Mankowski J. & Dickens J. (2008). Imaging of the explosive emission cathode plasma in a vircator high-power microwave source. IEEE Trans. Plasma Sci. 36, 13881389.
Xun T., Yang H.W., Zhang J.D., Liu Z.X., Wang Y. & Zhao Y.S. (2008). A ceramic radial insulation structure for a relativistic electron beam vacuum diode. Revs. Sci. Instrum. 79, 063303.
Yang J., Shu T. & Fan Y.W. (2013). Time evolution of the two-dimensional expansion velocity distributions of the cathode plasma in pulsed high-power diodes. Laser Part. Beams 31, 129134.
Zhang J., Zhong H.H. & Luo L. (2004). A novel overmoded slow-wave high-power microwave (HPM) generator. IEEE Trans. Plasma Sci. 32, 22362242.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 94 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th January 2018. This data will be updated every 24 hours.